Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease
Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.
Mucopolysaccharidosis type II (MPS II) is a rare, life-limiting, X-linked recessive disease characterised by deficiency of the lysosomal enzyme iduronate-2-sulfatase. Consequent accumulation of glycosaminoglycans leads to pathological changes in multiple body systems. Age at onset, signs and symptoms, and disease progression are heterogeneous, and patients may present with many different manifestations to a wide range of specialists. Expertise in diagnosing and managing MPS II varies widely between countries, and substantial delays between disease onset and diagnosis can occur. In recent years, disease-specific treatments such as enzyme replacement therapy and stem cell transplantation have helped to address the underlying enzyme deficiency in patients with MPS II. However, the multisystem nature of this disorder and the irreversibility of some manifestations mean that most patients require substantial medical support from many different specialists, even if they are receiving treatment. This article presents an overview of how to recognise, diagnose, and care for patients with MPS II. Particular focus is given to the multidisciplinary nature of patient management, which requires input from paediatricians, specialist nurses, otorhinolaryngologists, orthopaedic surgeons, ophthalmologists, cardiologists, pneumologists, anaesthesiologists, neurologists, physiotherapists, occupational therapists, speech therapists, psychologists, social workers, homecare companies and patient societies.Take-home messageExpertise in recognising and treating patients with MPS II varies widely between countries. This article presents pan-European recommendations for the diagnosis and management of this life-limiting disease.
Loss-of-function studies show that the human mitochondrial YME1L protease ensures cell proliferation, maintains normal cristae morphology and complex I activity, acts in an antiapoptotic manner, protects mitochondria from accumulation of oxidatively damaged membrane proteins, and is involved in proteolytic regulation of respiratory chain biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.