Probiotic could be a promising alternative to antibiotics for the prevention of enteric infections; however, further information on the dose effects is required. In this study, weanling piglets were orally administered low- or high-dose Lactobacillus rhamnosus ACTT 7469 (1010 CFU/d or 1012 CFU/d) for 1 week before F4 (K88)-positive Escherichia coli challenge. The compositions of faecal and gastrointestinal microbiota were recorded; gene expression in the intestines was assessed by real-time PCR; serum tumour necrosis factor-α (TNF-α) concentrations and intestinal Toll-like receptor 4 (TLR4) were detected by ELISA and immunohistochemistry, respectively. Unexpectedly, high-dose administration increased the incidence of diarrhoea before F4+ETEC challenge, despite the fact that both doses ameliorated F4+ETEC-induced diarrhoea with increased Lactobacillus and Bifidobacterium counts accompanied by reduced coliform shedding in faeces. Interestingly, L. rhamnosus administration reduced Lactobacillus and Bifidobacterium counts in the colonic contents, and the high-dose piglets also had lower Lactobacillius and Bacteroides counts in the ileal contents. An increase in the concentration of serum TNF-α induced by F4+ETEC was observed, but the increase was delayed by L. rhamnosus. In piglets exposed to F4+ETEC, jejunal TLR4 expression increased at the mRNA and protein levels, while jejunal interleukin (IL)-8 and ileal porcine β-defensins 2 (pBD2) mRNA expression increased; however, these increases were attenuated by administration of L. rhamnosus. Notably, expression of jejunal TLR2, ileal TLR9, Nod-like receptor NOD1 and TNF-α mRNA was upregulated in the low-dose piglets after F4+ETEC challenge, but not in the high-dose piglets. These findings indicate that pretreatment with a low dose of L. rhamnosus might be more effective than a high dose at ameliorating diarrhoea. There is a risk that high-dose L. rhamnosus pretreatment may negate the preventative effects, thus decreasing the prophylactic benefits against potential enteric pathogens. Our data suggest a safe threshold for preventative use of probiotics in clinical practice.
Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4 ϩ ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4 ϩ ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4 ϩ ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4 ϩ ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis.IMPORTANCE The present study is important for improving our understanding of the protective role of probiotics against Escherichia coli infection in piglets. Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. In this study, low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to MUC4-resistant piglets for 1 week before the F4-expressing ETEC strain (F4 ϩ ETEC) challenge. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis.
KEYWORDS
Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1 (IL-1), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland.
Mastitis affects cows in all regions of the world and can cause a decrease in milk production and quality, resulting in a major economic burden to the dairy industry (1). Escherichia coli is by far the most common cause of mastitis, since it is isolated in more than 80% of cases of coliform mastitis (2). Antibiotic therapy frequently leaves residues in milk, potentially facilitating the development of antibiotic resistance. Probiotics represent a novel alternative to antibiotics for controlling pathogen infections.Lactobacillus rhamnosus GR-1 is a probiotic bacterium isolated from the female urethra, and oral ingestion of L. rhamnosus GR-1 and L. fermentum RC-14 reduces vaginal colonization by pathogenic bacteria and yeasts and maintains urogenital health in women (3). Pretreatment of pregnant CD-1 mice with L. rhamnosus GR-1 culture supernatant decreases lipopolysaccharide (LPS)-induced production of various cytokines and chemokines (4). Lactobacillus rhamnosus GR-1 suppresses expression of nuclear factor (NF)-B-related inflammatory genes and activates alternate mitogen-activated protein kinase (MAPK) and activator protein 1 pathways to recruit host defense factors...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.