Cholangiocarcinoma (CCA) constitutes a diverse group of malignancies emerging in the biliary tree. CCAs are divided into three subtypes depending on their anatomical site of origin: intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) CCA 1,2 (Fig. 1). Of note, considered as an independent entity, mixed HCC-CCA tumours are a rare type of liver malignancy sharing features of both iCCA and HCC and presenting an aggressive disease course and poor prognosis 3,4. iCCAs arise above the second-order bile ducts, whereas the point of anatomical distinction between pCCA and dCCA is the insertion of the cystic duct. pCCA and dCCA can also be collectively referred to as 'extrahepatic' (eCCA) 5. In the USA, pCCA is the single largest group, accounting for approximately 50-60% of all CCAs, followed by dCCA (20-30%) and iCCA (10-20%) 1,6,7. CCA is the second most common primary hepatic malignancy after hepatocellular carcinoma (HCC), comprising approximately 15% of all primary liver tumours and 3% of gastrointestinal cancers 1,6,7. CCAs are usually asymptomatic in early stages and, therefore, often diagnosed when the disease is already in advanced stages, which highly compromises therapeutic options, resulting in a dismal prognosis 1,8. CCA is a rare cancer, but its incidence (0.3-6 per 100,000 inhabitants per year) 1 and mortality (1-6 per 100,000 inhabitants per year, globally 9 , not taking into account specific regions with incidence >6 per 100,000 habitants such as South Korea, China and Thailand) have been increasing in the past few decades worldwide, representing a global health problem. Despite advances in
Hepatocellular carcinoma (HCC) can have viral or non-viral causes1–5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH–HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH–HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH–HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Background Thrombomodulin‐associated coagulopathy (TM‐AC) is a rare bleeding disorder in which a single reported p.Cys537* variant in the thrombomodulin gene THBD causes high plasma thrombomodulin (TM) levels. High TM levels attenuate thrombin generation and delay fibrinolysis. Objectives To report the characteristics of pedigree with a novel THBD variant causing TM‐AC, and co‐inherited deficiency of thrombin‐activatable fibrinolysis inhibitor (TAFI). Patients/methods Identification of pathogenic variants in hemostasis genes by next‐generation sequencing and case recall for deep phenotyping. Results Pedigree members with a previously reported THBD variant predicting p.Pro496Argfs*10 and chain truncation in TM transmembrane domain had abnormal bleeding and greatly increased plasma TM levels. Affected cases had attenuated thrombin generation and delayed fibrinolysis similar to previous reported TM_AC cases with THBD p.Cys537*. Coincidentally, some pedigree members also harbored a stop‐gain variant in CPB2 encoding TAFI. This reduced plasma TAFI levels but was asymptomatic. Pedigree members with TM‐AC caused by the p.Pro496Argfs*10 THBD variant and also TAFI deficiency had a partially attenuated delay in fibrinolysis, but no change in the defective thrombin generation. Conclusions These data extend the reported genetic repertoire of TM‐AC and establish a common molecular pathogenesis arising from high plasma levels of TM extra‐cellular domain. The data further confirm that the delay in fibrinolysis associated with TM‐AC is directly linked to increased TAFI activation. The combination of the rare variants in the pedigree members provides a unique genetic model to develop understanding of the thrombin‐TM system and its regulation of TAFI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.