Apelin reduces left ventricular preload and afterload and increases contractile reserve without evidence of hypertrophy. These results associate apelin with a positive hemodynamic profile and suggest it as an attractive target for pharmacotherapy in the setting of heart failure.
Background-Operator-independent isotropic 3D MRI may greatly simplify the assessment of complex morphology in congenital heart disease. We sought to evaluate the reliability of this new approach. Methods and Results-In 31 adolescent and adult patients (age, 6 to 42 years; median, 16 years) with congenital heart disease, cardiac morphology was determined with free-breathing (navigator-gated), isotropic, 3D steady-state freeprecession (3D SSFP) MRI and independently evaluated by 2 observers. Cardiac diagnoses and multiple distance measurements were compared with conventional MR reference sequences (ie, spin-echo, cine gradient-echo, contrastenhanced MR angiography) and with echocardiography/cine cardioangiography or surgery. Of the 31 patients, 24 had native congenital heart defects or residual defects after repair that warranted immediate treatment. None of these defects was missed by 3D SSFP. Novel diagnostic issues were discovered in 4 of 31 patients (coronary anomalies, nϭ3; left juxtaposition of the right atrial appendage in double-outlet right ventricle and transposition of the great arteries, 1). For sizes of valves and vessels, we found minor mean differences of Ϫ1.1 to 1.6 mm, with SD ranging from 1.2 to 2.9 mm, demonstrating overall good agreement with standard MRI (Bland-Altman analysis). Interobserver variability of 3D SSFP distance measures was low; mean differences ranged from Ϫ1.5 to 1.0 mm, and SD ranged from 0.8 to 2.5 mm. Scatter was lower for extracardiac than intracardiac measures. Conclusions-In adolescents and adults, isotropic 3D SSFP MRI allows reliable assessment of complex cardiac morphology. Distance measurements are accurate and reproducible. Thus, a single operator-independent acquisition may substitute for conventional 2D MRI sequences to accelerate and simplify MR scanning in congenital heart disease.
This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-making.
BackgroundThe objective assessment of global and regional cardiac function in children has shown to be clinically relevant but is challenging to conduct. Cardiovascular magnetic resonance (CMR) has emerged as a valuable diagnostic modality especially in patients with cardiomyopathy or congenital heart disease. However, data on the normal cardiac deformation in children assessed by CMR is lacking at present. Thus, the aim of this study was to provide reference values for cardiac strain and strain rate in children and adolescents derived from CMR feature tracking (FT) measurements.MethodsIn this binational study, eighty children and adolescents (age 0.4–18.0 years, 41 male, 39 female) free from cardiac diseases from two centers underwent CMR in 1.5 T whole-body scanners in supine position. Global peak radial, circumferential and longitudinal systolic strains as well as the corresponding early peak diastolic strain rates were assessed applying FT on short axis as well as 3- and 4-chamber views of standard cine steady-state free precession images.ResultsThe difference between genders yielded no significance for all assessed strains. Yet, all strains showed a significant parabolic relation to age and an even stronger one to body surface area (BSA). Therefore, BSA-specific reference values were determined using a polynomial regression model. The apical cardiac segments featured significant higher peak circumferential but lower peak radial systolic strains than the midventricular and basal segments (all p < 0.001).ConclusionsThe assessment of cardiac deformation by CMR-FT is feasible in children. This is the first CMR study providing specific reference values for FT-derived strain and strain rate in the pediatric age range.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-016-0310-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.