Summary Background Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. Methods We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov , NCT04331509 . Findings Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. Interpretation In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. Funding Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
Background The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. Methods In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m 2 vs ≥30 kg/m 2 ), and comorbidities (binary variable, with or without comorbidities). Findings Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49–68) for ChAdOx1 nCoV-19 and 69% (66–72) for BNT162b2 at 21–44 days and 72% (63–79) for BNT162b2 after 45–59 days. Interpretation Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. Funding ZOE Global, National Institute for Health Research, Chronic Disease Research Fo...
The gut microbiome is shaped by diet and influences host metabolism, but these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of >1,100 gut microbiomes from individuals with detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements. We found strong associations between microbes and specific nutrients, foods, food groups, and general dietary indices, driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were reproducible across cohorts, and blood markers of cardiovascular disease and impaired glucose tolerance were more strongly associated with microbiome structure. While some microbes such as Prevotella copri and Blastocystis spp., were indicators of reduced postprandial glucose metabolism, several species were more directly predictive for postprandial triglycerides and C-peptide. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favourable cardiometabolic and postprandial markers, indicating our large-scale resource can potentially stratify the gut microbiome into generalizable health levels among individuals without clinically manifest disease. Fig. 1: The PREDICT 1 study associates gut microbiome structure with habitual diet and blood cardiometabolic markers. (A)The PREDICT 1 study assessed the gut microbiome of 1,098 volunteers from the UK and US via metagenomic sequencing of stool samples. Phenotypic data obtained through in-person assessment, blood/biospecimen collection, and the return of validated study questionnaires queried a range of relevant host/environmental factors including (1) personal characteristics, such as age, BMI, and estimated visceral fat; (2) habitual dietary intake using semi-quantitative food frequency questionnaires (FFQs);(3) fasting; and (4) postprandial cardiometabolic blood and inflammatory markers, total lipid and lipoprotein concentrations, lipoprotein particle sizes, apolipoproteins, derived metabolic risk scores, glycaemic-mediated metabolites, and metabolites related to fatty acid metabolism. (B) Overall microbiome alpha diversity, estimated as the total number of confidently identified microbial species in a given sample (richness), was correlated with HDL-D (positive) and estimated hepatic steatosis (negative). Up to ten strongest absolute Spearman correlations are reported for each category with q<0.05. Top species based on Shannon diversity are reported in Supplementary Fig. 1A and all correlations are in Supplementary Table 1. Microbial diversity and composition are linked with diet and fasting and postprandial biomarkersWe first leveraged a unique subpopulation of our study comprised of 480 twins to disentangle the confounding effects of shared genetics from other factors on microbiome composition. Our data confirmed that host genetics influences microbiome composition only to a small extent 18 , as intra-twin pair microbiome ...
(Figure 2c), and less than 1% of variation for postprandial triglyceride and postprandial C-peptide (Figure 2b and 2d). Gut microbiome (16S rRNA). We estimated the contribution of gut microbiome composition using relative bacterial taxonomic abundances and measures of community diversity and richness, derived from 16S rRNA high-throughput sequencing of baseline stool specimens (Supplemental Table 4). We found that without adjusting for any other individual characteristics the gut microbiome composition explained 7.5% of postprandial triglyceride6h-rise, 6.4% of postprandial glucoseiAUC0-2h and 5.8% of postprandial C-peptide1h-rise. Meal composition, habitual diet and meal context. To determine the impact of the macronutrient composition of meals, we measured triglyceride6h-rise and C-peptide1h-rise for two standardized home phase meals of contrasting macronutrient compositions (for triglyceride, comparison of meals 1 and 7: 85 vs 28g of carbohydrate and 50 vs 40 g of fat at breakfast, both followed by a lunch of 71g carbohydrate and 22g fat; for C-peptide, comparison of meal 2 and 3: 71 vs 41 g of carbohydrate and 22 vs 35 g of fat; Supplement Table 2) in subsets of participants (n=712 and n=186, respectively). GlucoseiAUC0-2h was measured for seven standardized meals (comparison of meals 1, 2, 4, 5, 6, 7 and 8: 28 -95 g carbohydrate; 0 -53 g fat) totalling 9,102 meals in 920 individuals. The proportions of variance explained by meal composition, habitual diet, and by meal context are shown for triglyceride6h-risein Figure 2b, for glucoseiAUC0-2hin Figure 2c, and for C-peptide1h-risein Figure 2d. A multivariate regression model (meals 1, 2, 4, 5, 6, 7 and 8) revealed that the Glucosei AUC0-2h (mmol/L*s) was significantly (P<0.001) reduced by 79, 142 and 185 for every 1g fat, fiber and protein respectively, after adjustment for carbohydrate consumption. Machine learning model. To estimate the unbiased predictive utility of the factors analysed, we used a machine learning approach robust to overfitting 22 . Random Forest regression models 23 were fitted using all the informative features (meal composition, habitual diet, meal context, anthropometry, genetics, microbiome, clinical and biochemical parameters) to predict triglyceride6h10 described in the Methods, we considered not only the effect of the meal macronutrient and energy content in the response (meal composition), but also considered how each individual responded on average to all their set meals relative to the population (individual glucose scaling), as well as the effect of the individual's meal-specific response, the error attributable to the glucose measurement and other sources of variation (including modifiable sources of variation such as sleep, circadian rhythm and exercise). We found that, consistent with the linear models described earlier, the ANOVA models show that there are three meal-related factors explaining individual glycemic responses. Meal macronutrient composition alters iAUC by 16.73% (95%CI 15.37 -18.92%), but the individual glucose...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.