BACKGROUNDSpinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein. METHODSWe conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included overall survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis. RESULTSIn the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41%] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P = 0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P = 0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups. CONCLUSIONSAmong infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug. (Funded by Biogen and Ionis Pharmaceuticals; ENDEAR ClinicalTrials.gov number, NCT02193074.)
ObjectiveTo report safety, pharmacokinetics, exon 53 skipping, and dystrophin expression in golodirsen-treated patients with Duchenne muscular dystrophy (DMD) amenable to exon 53 skipping.MethodsPart 1 was a randomized, double-blind, placebo-controlled, 12-week dose titration of once-weekly golodirsen; part 2 is an ongoing, open-label evaluation. Safety and pharmacokinetics were primary and secondary objectives of part 1. Primary biological outcome measures of part 2 were blinded exon skipping and dystrophin protein production on muscle biopsies (baseline, week 48) evaluated, respectively, using reverse transcription PCR and Western blot and immunohistochemistry.ResultsTwelve patients were randomized to receive golodirsen (n = 8) or placebo (n = 4) in part 1. All from part 1 plus 13 additional patients received 30 mg/kg golodirsen in part 2. Safety findings were consistent with those previously observed in pediatric patients with DMD. Most of the study drug was excreted within 4 hours following administration. A significant increase in exon 53 skipping was associated with ∼16-fold increase over baseline in dystrophin protein expression at week 48, with a mean percent normal dystrophin protein standard of 1.019% (range, 0.09%–4.30%). Sarcolemmal localization of dystrophin was demonstrated by significantly increased dystrophin-positive fibers (week 48, p < 0.001) and a positive correlation (Spearman r = 0.663; p < 0.001) with dystrophin protein change from baseline, measured by Western blot and immunohistochemistry.ConclusionGolodirsen was well-tolerated; muscle biopsies from golodirsen-treated patients showed increased exon 53 skipping, dystrophin production, and correct dystrophin sarcolemmal localization.Clinicaltrials.gov identifierNCT02310906.Classification of evidenceThis study provides Class I evidence that golodirsen is safe and Class IV evidence that it induces exon skipping and novel dystrophin as confirmed by 3 different assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.