At the end of 2020, population-based vaccination programs with new generation mRNA-based vaccines began almost all over the world. The aim of the study was to evaluate the titer of anti-SARS-CoV-2 IgG antibodies against the S1 subunit of the virus’s spike protein as a marker of the humoral response in 477 patients and the concentration of interferon-gamma as an indicator of cellular response in 28 individuals. In our studies, we used serological enzyme-linked immunosorbent assays. IgG was measured in weeks 2 and 3 after the first dose and 1–5 weeks after the second dose of an mRNA vaccine in seropositive and seronegative individuals as well as in symptomatic and asymptomatic convalescents. High levels of antibodies were observed in 98% of our vaccinated cohort, and the presence of protective T cells was confirmed in the blood samples of all participants. The humoral immune response is diversified and is visible as early as 2–3 weeks after the first dose of the mRNA vaccine. The level of protection increased significantly after the second dose, with the increase being much greater in pre-vaccine healthy subjects and less in convalescents. In the second and third weeks after the second dose, the concentration of IgG antibodies was the highest, and in the following weeks, it decreased gradually. Regular serological measurements on eight subjects show that antibody titers are lower four months after vaccination than before the second dose.
To optimize genetic testing, it is necessary to establish the spectrum of breast cancer‐predisposing mutations in particular ethnic groups. We studied 1,018 women with a strong family history for breast cancer (families with hereditary breast cancer; HBC) from genetically homogenous population of Poland, which is populated by ethnic Slavs, for mutations in 14 cancer susceptibility genes. Additionally, we compared the frequency of candidate pathogenic variants in breast cancer cases and controls. Germline mutations were detected in 512 of 1,018 probands with breast cancer (50.3%), including BRCA1/2 mutations detected in 420 families and non‐BRCA mutations seen in 92 families. Thirteen BRCA1/2 founder mutations represented 84% of all BRCA1/2‐positive cases. Seven founder mutations of CHEK2, PALB2, NBN and RECQL represented 73% of all non‐BRCA‐positive cases. Odds ratios for hereditary breast cancer were 87.6 for BRCA1, 15.4 for PALB2, 7.2 for CHEK2, 2.8 for NBN and 15.8 for RECQL. Odds ratios for XRCC2, BLM and BARD1 were below 1.3. In summary, we found that 20 founder mutations in six genes (BRCA1/2, CHEK2, PALB2, NBN and RECQL) are responsible for 82% of Polish hereditary breast cancer families. A simple test for these 20 mutations will facilitate genetic testing for breast cancer susceptibility in Poland. It may also facilitate genetic testing for breast cancer susceptibility in other Slavic populations and women of Slavic descent worldwide.
Background: COVID-19 vaccines induce a differentiated humoral and cellular response, and one of the comparable parameters of the vaccine response is the determination of IgG antibodies. Materials and Methods: Concentrations of IgG anti-SARS-CoV-2 antibodies were analyzed at three time points (at the beginning of May, at the end of June and at the end of September). Serum samples were obtained from 954 employees of the Nicolaus Copernicus University in Toruń (a total of three samples each were obtained from 511 vaccinated participants). IgG antibody concentrations were determined by enzyme immunoassay. The statistical analysis included comparisons between vaccines, between convalescents and COVID-19 non-patients, between individual measurements and included the gender, age and blood groups of participants. Results: There were significant differences in antibody levels between mRNA and vector vaccines. People vaccinated with mRNA-1273 achieved the highest levels of antibodies, regardless of the time since full vaccination. People vaccinated with ChAdOx1 nCoV-2019 produced several times lower antibody levels compared to the mRNA vaccines, while the antibody levels were more stable. In the case of each of the vaccines, the factor having the strongest impact on the level and stability of the IgG antibody titers was previous SARS-CoV-2 infection. There were no significant correlations with age, gender and blood type. Summary: mRNA vaccines induce a stronger humoral response of the immune system with the fastest loss of antibodies over time.
BackgroundThe addition of MRI to mammography and ultrasound for breast cancer screening has been shown to improve screening sensitivity for high risk women, but there is little data to date for women at average or intermediate risk.MethodsTwo thousand nine hundred and ninety-five women, aged 40 to 65 years with no previous history of breast cancer were enrolled in a screening program, which consisted of two rounds of MRI, ultrasound and mammography, one year apart. Three hundred and fifty-six women had a CHEK2 mutation, 370 women had a first-degree relative with breast cancer (and no CHEK2 mutation) and 2269 women had neither risk factor. Subjects were followed for breast cancer for three years from the second screening examination.ResultsTwenty-seven invasive epithelial cancers, one angiosarcoma and six cases of DCIS were identified over the four-year period. Of the 27 invasive cancers, 20 were screen-detected, 2 were interval cancers, and five cancers were identified in the second or third follow-up year (i.e., after the end of the screening period). For invasive cancer, the sensitivity of MRI was 86%, the sensitivity of ultrasound was 59% and the sensitivity of mammography was 50%. The number of biopsies incurred by MRI (n = 156) was greater than the number incurred by mammography (n = 35) or ultrasound (n = 57). Of the 19 invasive cancers detected by MRI, 17 (89%) were also detected by ultrasound or mammography.ConclusionsIn terms of sensitivity, MRI is slightly better than the combination of mammography and ultrasound for screening of women at average or intermediate risk of breast cancer. However, because of additional costs incurred by MRI screening, and the small gain in sensitivity, MRI screening is probably not warranted outside of high-risk populations.
Bloom Syndrome is a rare recessive disease which includes a susceptibility to various cancers. It is caused by homozygous mutations of the BLM gene. To investigate whether heterozygous carriers of a BLM mutation are predisposed to breast cancer, we sequenced BLM in 617 patients from Polish families with a strong family history of breast cancer. We detected a founder mutation (c.1642C>T, p.Gln548Ter) in 3 of the 617 breast cancer patients (0.49%) who were sequenced. Then, we genotyped 14,804 unselected breast cancer cases and 4698 cancer-free women for the founder mutation. It was identified in 82 of 14,804 (0.55%) unselected cases and in 26 of 4698 (0.55%) controls (OR = 1.0; 95%CI 0.6–1.6). Clinical characteristics of breast cancers in the BLM mutation carriers and non-carriers were similar. Loss of the wild-type BLM allele was not detected in cancers from the BLM mutation carriers. No cancer type was more common in the relatives of mutation carriers compared to relatives of non-carriers. The BLM founder mutation p.Gln548Ter, which in a homozygous state is a cause of Bloom syndrome, does not appear to predispose to breast cancer in a heterozygous state. The finding casts doubt on the designation of BLM as an autosomal dominant breast cancer susceptibility gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.