Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone’s antigen receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of Toll-like receptor 9 (TLR-9), occasional MYD88 mutations, and BCR specificity for DNA or antigens physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis following B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN + interleukin-15 (IL-15), a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in-vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone’s BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated (ATM) anomaly + del13q14), and negatively linked to a very high proportion of CD38+ cells within the blood-derived B-CLL population. Furthermore, a clone’s intrinsic potential for in-vitro growth correlated directly with doubling time in blood, in the case of B-CLL with IGHV-unmutated BCR and <30% CD38+ cells in blood. Finally, in-vitro high-proliferator status was statistically linked to diminished patient survival. The above findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in-vivo B-CLL growth.
Metformin, a widely used antihyperglycaemic, has a good safety profile, reasonably manageable side-effects, is inexpensive, and causes a desirable amount of weight loss. In 4 studies of patients with tuberculosis (1 prospective and 3 retrospective), metformin administration resulted in better outcomes. In mice with several models of endotoxemia, metformin diminished levels of proinflammatory cytokines and improved survival. Laboratory studies showed effectiveness of the drug on multiple pathogens, including Trichinella spiralis, Staphylococcus aureus, Pseudomonas aeruginosa, hepatitis B virus, hepatitis C virus, and human immunodeficiency virus. Metformin administration in humans and mice produced major changes in the composition of the gut microbiota. These recently discovered microbe-modulating properties of the drug have led investigators to predict wide therapeutic utility for metformin. The recent easing in United States Food and Drug Administration (FDA) guidelines regarding administration of metformin to patients with kidney disease, and reduced anxiety about patient safety in terms of lactic acidosis, increase the probability of broadening of metformin's usage as a treatment of infectious agents. In this text we review articles pertinent to metformin's effects on microorganisms, both pathogens and commensals. We highlight the possible role of metformin in a wide range of infectious diseases and a possible expansion of its therapeutic profile in this field. A systematic review was done of PubMed indexed articles that examined the effects of metformin on a wide range of pathogens. Metformin was found to have efficacy as an antimicrobial agent in patients with tuberculosis. Mice infected with Trypanosomiasis cruzi had higher survival when also treated with metformin. The drug in vitro was active against T. spiralis, S. aureus, P. aeruginosa, and hepatitis B virus. In addition there is emerging literature on its role in sepsis. We conclude that metformin may have a potential role in the therapy for multiple infectious diseases. Metformin, in addition to its traditional effects on glucose metabolism, provides anti-microbial benefits in patients with tuberculosis and in a very wide range of other infections encounters in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.