Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th-10th week), (2) the immature polyhormonal islet stage (11th-15th week), (3) the insulin monohormonal core islet stage (16th-29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas.
The immunocytochemical characterization of cell lines originating from thyroid medullary carcinoma, i.e. human TT cells and rat rMTC 6-23 cells, was undertaken. The immunocytochemical studies were supplemented by ultrastructural studies, including ultrastructural immunocytochemistry, and by radioimmunological estimation of calcitonin secretion to the medium. In rMTC 6-23 cells (subcultures 24 to 30), no hormone presence was demonstrated immunocytochemically, which corresponded to the absence of secretory granules at the ultrastructural level. Of various proteins sought, only neuron-specific enolase could be demonstrated. Nevertheless, the cells secreted calcitonin into the medium. TT cells (passages 145 to 160) produced secretory granules. The granules contained calcitonin, calcitonin gene-related peptide, somatostatin, neurotensin, met-enkephalin, leu-enkephalin, gastrin releasing peptide, parathyroid hormone-related protein, functional proteins of the chromogranin group and synaptophysin. Other functional proteins found in the cytosol of TT cells included non-specific enolase, calbindin and tyrosine hydroxylase. Receptor for calcitriol was localized in the cell nucleus. Marker proteins were localized in the cytosol (carcinoembryonic antigen) and in the cell skeleton (alpha-tubulin, cytokeratin). Following changes in ionized calcium levels in the medium, changes in calcitonin secretion and in immunocytochemical detectability of some hormones and functional proteins were observed. TT cells demonstrated the expression of numerous hormones and functional proteins associated with calcitonin secretion. Further, the cells in their ultrastructure, immunocytochemical and secretory characteristics, resemble more closely normal parafollicular cells of the thyroid and, in our opinion, represent a more appropriate model for functional studies.
Introduction. Previous studies analyzing ghrelin and obestatin expression in thyroid gland tissue are not unanimous and are mostly related to ghrelin. The role of ghrelin and obestatin in the thyroid gland appears very interesting due to their probable involvement in cell proliferation. Furthermore, since the thyroid gland is associated with the maintenance of energy balance, the relationship between ghrelin, obestatin and thyroid function is worthy of consideration. The aim of the study was to assess ghrelin and obestatin immunocytochemical expression in nodular goiter (NG), papillary cancer (PTC) and medullary cancer (MTC). Material and methods. Analyzed samples included 9 cases of NG, 8 cases of PTC and 11 cases of MTC. The analysis of ghrelin and obestatin expression was performed by use of the immunohistochemical (IHC) EnVision system and evaluated with filter HSV software (quantitative morphometric analysis). Results. Quantitative ghrelin expression in MTC cells was higher than in NG (p = 0.013) and correlated negatively with the size of the tumor (r= -0.829, p < 0.05). We did not observe any differences in ghrelin expression neither between MTC and PTC nor between NG and PTC. Obestatin immunoexpression pattern in all analyzed specimens was irregular and poorly accented. The strongest immunoreactivity for obestatin was demonstrated in NG. In MTC obestatin expression was significantly weaker than in NG and PTC (p < 0.05 in both cases). In NG the intensity of obestatin immunostaining was significantly higher than that of ghrelin (p = 0.03). Conversely, ghrelin expression in MTC was definitely more evident than obestatin immunoreactivity (p < 0.01). There was no statistically significant difference between ghrelin and obestatin expression in PTC. No correlations were detected between reciprocal tissue expressions of ghrelin and obestatin in the analyzed specimens of NG, PTC or MTC. Conclusions. The differences between ghrelin expression in NG and MTC suggest that ghrelin may be involved in thyroid cell proliferation. The differences between ghrelin and obestatin immunoreactivity in benign and malignant thyroid tumors could support the theory of alternative transcription of the preproghrelin gene and independent production of ghrelin and obestatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.