SummaryGlycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.PaperFlick
Introduction: Intestinal parasites are important contributors to the global disease burden, especially in children of low-income countries. The present study determined the frequency of intestinal parasites in children hospitalized at the diarrhea section of the Infectious-Contagious Diseases ward and at the Malnutrition ward of the Department of Pediatrics of the Maputo Central Hospital in Mozambique. Methodology: This pilot study conducted between February and March 2009 enrolled a total of 93 children between 1.5 and 48.2 months of age; 87.1% were younger than 24 months. Parasite detection in stool samples was achieved using direct microscopic observation and Ritchie's concentration technique. Results: Infection with pathogenic intestinal parasites was detected in 16.1% (15/93) of the children. Giardia duodenalis and Trichuris trichiura were the most common parasites (6.5%, 6/93 each), followed by Ascaris lumbricoides (2.2%, 2/93). One case of mixed infection with A. lumbricoides plus T. trichiura was also detected. Conclusion: This study reinforces the importance of routinely examining stool samples for the diagnosis of intestinal parasites (including protozoa) in children hospitalized in endemic areas.
The design, implementation and demonstration of a novel and generic computational forecast framework for multi-scale prediction of extreme sea levels and associated flooding is presented. Denoted Water Information Forecast Framework (WIFF), it integrates process-based models for waves, tides and surges from regional to local scales, predicting the flooding of coastal areas, and supporting the routine and emergency management of coastal resources. WIFF manages the simulations and the real-time monitoring data, archives the data and makes the information available through a WebGIS that targets users with distinct access privileges. Additionally, the web component of WIFF adapts automatically and transparently to any device. WIFF also provides ways to assess the model accuracy and generates tailored products based on model results and observations. WIFF is demonstrated in the prediction of extreme water levels in the Portuguese coast, simulating processes at different scales: at basin scales, waves are simulated in the North Atlantic and in the Portuguese shelf, and sea levels due to tides and atmospheric forcings are simulated in the Northeast Atlantic; at estuarine scales, high-resolution, fully coupled wave/circulation predictions are performed in the Tagus estuary to account for wave-current interactions. User-oriented georeferenced products are generated, including automatic model/ data comparisons, targeting the needs of civil protection agents and combining for the first time an agile, service-oriented platform with high-resolution, process-rich predictions of the Tagus dynamics.
New challenges in flood risk management are raised by climate change and land-use development. These challenges are particularly complex in estuarine and coastal systems, where different hazard sources interact in a dynamic socio-economic context. This paper presents an innovative approach to support flood risk management in estuaries. The approach, developed at a local-scale basis, is applied in the case study of the Tagus estuary (Portugal). The methodology is supported by the regional framing of the study area and integrates hazard, exposed elements, territorial vulnerability and risk assessments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.