Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.
We explored the phylogeography of human Y-chromosomal haplogroup E3b by analyzing 3401 individuals from five continents. Our data refine the phylogeny of the entire haplogroup, which appears as a collection of lineages with very different evolutionary histories, and reveal signatures of several distinct processes of migrations and/or recurrent gene flow that occurred in Africa and western Eurasia over the past 25000 years. In Europe, the overall frequency pattern of haplogroup E-M78 does not support the hypothesis of a uniform spread of people from a single parental Near Eastern population. The distribution of E-M81 chromosomes in Africa closely matches the present area of distribution of Berber-speaking populations on the continent, suggesting a close haplogroup-ethnic group parallelism. E-M34 chromosomes were more likely introduced in Ethiopia from the Near East. In conclusion, the present study shows that earlier work based on fewer Y-chromosome markers led to rather simple historical interpretations and highlights the fact that many population-genetic analyses are not robust to a poorly resolved phylogeny.
Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics—North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement—more marked in some regions than in others—plus the effects of genetic drift.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50 -54 nucleotides 5 to the final exon-exon junction. We have described a set of naturally occurring human -globin gene mutations that apparently contradict this rule. The corresponding -thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type -globin ( WT ) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between WT mRNA and -globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; 39). Functional analyses of these mRNAs with 5-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5 terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50 -54 nt boundary rule." These observations impact on current models of NMD.Nonsense-mediated mRNA decay (NMD) 1 is an mRNA surveillance mechanism that rapidly degrades mRNAs carrying premature translation termination codons (1). Nonsense-containing mRNAs targeted by NMD can be generated by naturally occurring frameshift and nonsense mutations, splicing errors, leaky 40 S scanning, and utilization of minor AUG initiation sites (2, 3). A major function of the NMD pathway is to block the synthesis of truncated proteins that could have dominant negative effects on cell function (2, 4).Recent studies have shown that the NMD pathway in mammalian cells is linked to splicing-dependent deposition of a protein complex 20 -24 nucleotides (nt) 5Ј of each exon-exon junction (exon-junction complex; EJC). The EJC contains the general splicing activator RNPS1, the RNA export factor Aly/ REF, the shuttling protein Y14, the nuclear matrix-localized serine-arginine-containing protein SRm160, the oncoprotein DEK, and the Y14 binding protein magoh. The interaction of magoh with Y14 may have a role in cytoplasmic localization of mRNAs and in anchoring the NMD-specific factors Upf3 and Upf2 to the mRNA (5-18). Previous published data have shown that Upf3 and Upf2 join the EJC in different subcellular compartments: Upf3 (Upf3a and Upf3b) is loaded onto mRNAs in the nucleus during splicing via interactions with components of the EJC. In contrast, Upf2 joins the complex soon after cytoplasmic export is initiated (14,19,20). According to the present models, translating ribosomes displace EJCs from the open reading frame (ORF) during the "pioneer" round of cytoplasmic translation (21). If, however, the mRNA contains a pr...
SUMMARY:Present state of knowledge, mostly based on heterologous expression studies, indicates that the cystic fibrosis transmembrane conductance regulator (CFTR) protein bearing the F508del mutation is misprocessed and mislocalized in the cytoplasm, unable to reach the cell surface. Recently, however, it was described that protein levels and localization are similar between F508del and wild-type CFTR in airway and intestinal tissues, but not in the sweat glands. In this study, we used immunocytochemistry with three different anti-CFTR antibodies to investigate endogenous CFTR expression and localization in nasal epithelial cells from F508del homozygous patients, F508del carriers, and non-CF individuals. On average, 300 cells were observed per individual. No significant differences were observed for cell type distributions among CF, carrier, and non-CF samples; epithelial cells made up approximately 80% to 95% of all cells present. CFTR was detected mostly in the apical region (AR) of the tall columnar epithelial (TCE) cells, ciliated or nonciliated. By confocal microscopy analysis, we show that the CFTR apical region-staining does not overlap with either anti-calnexin (endoplasmic reticulum), anti-p58 (Golgi), or anti-tubulin (cilia) stainings. The median from results with three antibodies indicate that the apical localization of CFTR happens in 22% of TCE cells from F508del homozygous patients with CF (n ϭ 12), in 42% of cells from F508del carriers (n ϭ 20), and in 56% of cells from healthy individuals (n ϭ 12). Statistical analysis indicates that differences are significant among all groups studied and for the three antibodies (p Ͻ 0.05). These results confirm the presence of CFTR in the apical region of airway cells from F508del homozygous patients; however, they also reveal that the number of cells in which this occurs is significantly lower than in F508del carriers and much lower than in healthy individuals. These findings may have an impact on the design of novel pharmacological strategies aimed at circumventing the CF defect caused by the F508del mutation. (Lab Invest 2000, 80:857-868).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.