The influence of surface-bound Fe(II) on uranium oxidation state and speciation was studied as a function of time (6 min-72 h) and pH (6.1-8.5) in a U(VI)-Fe(II)-montmorillonite (Ca-montmorillonite, MONT) system under CO(2)-free, anoxic (O(2) <1 ppmv) conditions. The results show a rapid removal of U(VI) from the aqueous solution within 1 h under all pH conditions. U L(III)-edge X-ray absorption near-edge structure spectroscopy shows that 96% of the total sorbed U(VI) is reduced at pH 8.5. However, the extent of reduction significantly decreases at lower pH values as specifically sorbed Fe(II) concentration decreases. The reduction kinetics followed by X-ray photoelectron spectroscopy during 24 h at pH 7.5 demonstrates the presence of partially reduced surface species containing U(VI) and U(IV). Thermodynamically predicted mixed valence solids like U(3)O(8)/beta-U(3)O(7)/U(4)O(9) do not precipitate as verified by transmission electron microscopy and extended X-ray absorption fine-structure spectroscopy. This is also supported by the bicarbonate extraction results. The measured redox potentials of Fe(II)/Fe(III)-MONT suspensions are controlled by the Fe(II)/hydrous ferric oxide [HFO(s)] couple at pH 6.2 and by the Fe(II)/lepidocrocite [gamma-FeOOH(s)] couple at pH 7.5. The key finding of our study is the formation of a sorbed molecular form of U(IV) in abiotic reduction of U(VI) by sorbed Fe(II) at the surface of montmorillonite.
Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica et Cosmochimica Acta, Elsevier, 2007, 71 (23) , selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe 2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (x-ray absorption near-edge spectroscopy) and EXAFS (extended x-ray absorption finestructure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.