Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
In the past 5 years, studies have found changes in miRNA levels in the hippocampus of patients with temporal lobe epilepsy and in neural tissues from animal models of epilepsy. Early functional studies showed that silencing of brain-specific miR-134 using antisense oligonucleotides (antagomirs) had potent antiseizure effects in animal models, whereas genetic deletion of miR-128 produced fatal epilepsy in mice. Levels of certain miRNAs were also found to be altered in the blood of rodents after seizures. In the past 18 months, functional studies have identified nine novel miRNAs that appear to influence seizures or hippocampal pathology. Their targets include transcription factors, neurotransmitter signalling components, and modulators of neuroinflammation. New approaches to manipulate miRNAs have been tested, including injection of mimics (agomirs) to enhance brain levels of miRNAs. Altered miRNA expression has also been reported in other types of refractory epilepsy and our understanding of how miRNA levels are controlled has grown, with studies on DNA methylation indicating epigenetic regulation. Biofluids (blood) of patients with epilepsy have shown differences in quantity of circulating miRNAs, implying diagnostic biomarker potential. WHERE NEXT?: Recent functional studies need to be replicated to build a robust evidence base. The specific cell types in which miRNAs execute their functions and their primary targets have to be identified, to fully explain the phenotypic effects of modulating miRNAs. Delivery of large molecules such as antisense inhibitors or mimics to the brain poses a challenge, and the multi-targeting effects of miRNAs create additional risks of unanticipated side effects. Potential genetic variation in miRNAs should be explored as the basis for disease susceptibility. The latest findings provide a rich source of new miRNA targets, but substantial challenges remain before their role in the pathogenesis, diagnosis, and treatment of epilepsy can be translated into clinical practice.
An increased production of superoxide has been shown to mediate glutamate-induced neuron death. We monitored intracellular superoxide production of hippocampal neurons during and after exposure to the glutamate receptor agonist NMDA (300 microm). During a 30 min NMDA exposure, intracellular superoxide production increased significantly and remained elevated for several hours after wash-out of NMDA. After a 5 min exposure, superoxide production remained elevated for 10 min, but then rapidly returned to baseline. Mitochondrial membrane potential also recovered after wash-out of NMDA. However, recovery of mitochondria was transient and followed by delayed mitochondrial depolarization, loss of cytochrome c, and a secondary rise in superoxide production 4-8 hr after NMDA exposure. Treatment with a superoxide dismutase mimetic before the secondary rise conferred the same protection against cell death as a treatment before the first. The secondary rise could be inhibited by the complex I inhibitor rotenone (in combination with oligomycin) and mimicked by the complex III inhibitor antimycin A. To investigate the relationship between cytochrome c release and superoxide production, human D283 medulloblastoma cells deficient in mitochondrial respiration (rho(-) cells) were exposed to the apoptosis-inducing agent staurosporine. Treatment with staurosporine induced mitochondrial release of cytochrome c, caspase activation, and cell death in control and rho(-) cells. However, a delayed increase in superoxide production was only observed in control cells. Our data suggest that the delayed superoxide production in excitotoxicity and apoptosis occurs secondary to a defect in mitochondrial electron transport and that mitochondrial cytochrome c release occurs upstream of this defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.