Predicting the duration of poststroke dysphagia is important to guide therapeutic decisions. Guidelines recommend nasogastric tube (NGT) feeding if swallowing impairment persists for 7 days or longer and percutaneous endoscopic gastrostomy (PEG) placement if dysphagia does not recover within 30 days, but, to our knowledge, a systematic prediction method does not exist. OBJECTIVE To develop and validate a prognostic model predicting swallowing recovery and the need for enteral tube feeding. DESIGN, SETTING, AND PARTICIPANTS We enrolled participants with consecutive admissions for acute ischemic stroke and initially severe dysphagia in a prospective single-center derivation (2011-2014) and a multicenter validation (July 2015-March 2018) cohort study in 5 tertiary stroke referral centers in Switzerland. EXPOSURES Severely impaired oral intake at admission (Functional Oral Intake Scale score <5). MAIN OUTCOMES AND MEASURES Recovery of oral intake (primary end point, Functional Oral Intake Scale Ն5) or return to prestroke diet (secondary end point) measured 7 (indication for NGT feeding) and 30 (indication for PEG feeding) days after stroke. RESULTS In total, 279 participants (131 women [47.0%]; median age, 77 years [interquartile range, 67-84 years]) were enrolled (153 [54.8%] in the derivation study; 126 [45.2%] in the validation cohort). Overall, 64% (95% CI, 59-71) participants failed to recover functional oral intake within 7 days and 30% (95% CI, 24-37) within 30 days. Prolonged swallowing recovery was independently associated with poor outcomes after stroke. The final prognostic model, the Predictive Swallowing Score, included 5 variables: age, stroke severity on admission, lesion location, initial risk of aspiration, and initial impairment of oral intake. Predictive Swallowing Score prediction estimates ranged from 5% (score, 0) to 96% (score, 10) for a persistent impairment of oral intake on day 7 and from 2% to 62% on day 30. Model performance in the validation cohort showed a discrimination (C statistic) of 0.84 (95% CI, 0.76-0.91; P < .001) for predicting the recovery of oral intake on day 7 and 0.77 (95% CI, 0.67-0.87; P < .001) on day 30, and a discrimination for a return to prestroke diet of 0.94 (day 7; 95% CI, 0.87-1.00; P < .001) and 0.71 (day 30; 95% CI, 0.61-0.82; P < .001). Calibration plots showed high agreement between the predicted and observed outcomes. CONCLUSIONS AND RELEVANCE The Predictive Swallowing Score, available as a smartphone application, is an easily applied prognostic instrument that reliably predicts swallowing recovery. It will support decision making for NGT or PEG insertion after ischemic stroke and is a step toward personalized medicine.
Objective The aim was to evaluate, in patients with atrial fibrillation (AF) and acute ischemic stroke, the association of prior anticoagulation with vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs) with stroke severity, utilization of intravenous thrombolysis (IVT), safety of IVT, and 3‐month outcomes. Methods This was a cohort study of consecutive patients (2014–2019) on anticoagulation versus those without (controls) with regard to stroke severity, rates of IVT/mechanical thrombectomy, symptomatic intracranial hemorrhage (sICH), and favorable outcome (modified Rankin Scale score 0–2) at 3 months. Results Of 8,179 patients (mean [SD] age, 79.8 [9.6] years; 49% women), 1,486 (18%) were on VKA treatment, 1,634 (20%) on DOAC treatment at stroke onset, and 5,059 controls. Stroke severity was lower in patients on DOACs (median National Institutes of Health Stroke Scale 4, [interquartile range 2–11]) compared with VKA (6, [2–14]) and controls (7, [3–15], p < 0.001; quantile regression: β −2.1, 95% confidence interval [CI] −2.6 to −1.7). The IVT rate in potentially eligible patients was significantly lower in patients on VKA (156 of 247 [63%]; adjusted odds ratio [aOR] 0.67; 95% CI 0.50–0.90) and particularly in patients on DOACs (69 of 464 [15%]; aOR 0.06; 95% CI 0.05–0.08) compared with controls (1,544 of 2,504 [74%]). sICH after IVT occurred in 3.6% (2.6–4.7%) of controls, 9 of 195 (4.6%; 1.9–9.2%; aOR 0.93; 95% CI 0.46–1.90) patients on VKA and 2 of 65 (3.1%; 0.4–10.8%, aOR 0.56; 95% CI 0.28–1.12) of those on DOACs. After adjustments for prognostic confounders, DOAC pretreatment was associated with a favorable 3‐month outcome (aOR 1.24; 1.01–1.51). Interpretation Prior DOAC therapy in patients with AF was associated with decreased admission stroke severity at onset and a remarkably low rate of IVT. Overall, patients on DOAC might have better functional outcome at 3 months. Further research is needed to overcome potential restrictions for IVT in patients taking DOACs. ANN NEUROL 2021;89:42–53
It has been hypothesized that decreased neurogenesis in the dentate gyrus may be involved in mediating depressive disorders, which are 1.5-3 times more frequent in women than in men. Additionally, prenatal stress may increase the risk of developing depression in adulthood. However, the interrelations between prenatal stress and the development of depression in adulthood, preferentially in females, are not understood. Here, we subjected pregnant rats to a single 20-min period of restraint stress on day 18 after mating. When the offspring were 75 days of age, the numbers of granule cells and pyramidal cells (area CA1-3) in the hippocampus were analyzed with the optical fractionator. The Cavalieri's principle was applied to analyze the volumes of both granule cell layer and pyramidal cell layer in the hippocampus. Prenatally stressed females, but not males, had reduced numbers of hippocampal granule cells compared to their non-prenatally stressed counterparts. This is the first report of a sex-specific difference concerning the reduction of the number of hippocampal granule cells due to prenatal stress. In humans, prenatal stress may induce cell loss in the granule cells of the hippocampus preferentially in females compared to males, and this may be a sex-specific predisposing factor for the development of depression in adulthood.
IMPORTANCEThe mechanisms driving neurodegeneration and brain atrophy in relapsing multiple sclerosis (RMS) are not completely understood.OBJECTIVE To determine whether disability progression independent of relapse activity (PIRA) in patients with RMS is associated with accelerated brain tissue loss. DESIGN, SETTING, AND PARTICIPANTSIn this observational, longitudinal cohort study with median (IQR) follow-up of 3.2 years (2.0-4.9), data were acquired from January 2012 to September 2019 in a consortium of tertiary university and nonuniversity referral hospitals. Patients were included if they had regular clinical follow-up and at least 2 brain magnetic resonance imaging (MRI) scans suitable for volumetric analysis. Data were analyzed between January 2020 and March 2021.EXPOSURES According to the clinical evolution during the entire observation, patients were classified as those presenting (1) relapse activity only, (2) PIRA episodes only, (3) mixed activity, or (4) clinical stability. MAIN OUTCOMES AND MEASURESMean difference in annual percentage change (MD-APC) in brain volume/cortical thickness between groups, calculated after propensity score matching. Brain atrophy rates, and their association with the variables of interest, were explored with linear mixed-effect models.RESULTS Included were 1904 brain MRI scans from 516 patients with RMS (67.4% female; mean [SD] age, 41.4 [11.1] years; median [IQR] Expanded Disability Status Scale score, 2.0 [1.5-3.0]). Scans with insufficient quality were excluded (n = 19). Radiological inflammatory activity was associated with increased atrophy rates in several brain compartments, while an increased annualized relapse rate was linked to accelerated deep gray matter (GM) volume loss. When compared with clinically stable patients, patients with PIRA had an increased rate of brain volume loss (MD-APC, −0.36; 95% CI, −0.60 to −0.12; P = .02), mainly driven by GM loss in the cerebral cortex. Patients who were relapsing presented increased whole brain atrophy (MD-APC, −0.18; 95% CI, −0.34 to −0.02; P = .04) with respect to clinically stable patients, with accelerated GM loss in both cerebral cortex and deep GM. No differences in brain atrophy rates were measured between patients with PIRA and those presenting relapse activity. CONCLUSIONS AND RELEVANCEOur study shows that patients with RMS and PIRA exhibit accelerated brain atrophy, especially in the cerebral cortex. These results point to the need to recognize the insidious manifestations of PIRA in clinical practice and to further evaluate treatment strategies for patients with PIRA in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.