Idiopathic pulmonary fibrosis (IPF) is characterized by distorted lung architecture and loss of respiratory function. Enhanced (myo)fibroblast activation, ECM deposition, and alveolar epithelial type II (ATII) cell dysfunction contribute to IPF pathogenesis. However, the molecular pathways linking ATII cell dysfunction with the development of fibrosis are poorly understood. Here, we demonstrate, in a mouse model of pulmonary fibrosis, increased proliferation and altered expression of components of the WNT/β-catenin signaling pathway in ATII cells. Further analysis revealed that expression of WNT1-inducible signaling protein-1 (WISP1), which is encoded by a WNT target gene, was increased in ATII cells in both a mouse model of pulmonary fibrosis and patients with IPF. Treatment of mouse primary ATII cells with recombinant WISP1 led to increased proliferation and epithelial-mesenchymal transition (EMT), while treatment of mouse and human lung fibroblasts with recombinant WISP1 enhanced deposition of ECM components. In the mouse model of pulmonary fibrosis, neutralizing mAbs specific for WISP1 reduced the expression of genes characteristic of fibrosis and reversed the expression of genes associated with EMT. More importantly, these changes in gene expression were associated with marked attenuation of lung fibrosis, including decreased collagen deposition and improved lung function and survival. Our study thus identifies WISP1 as a key regulator of ATII cell hyperplasia and plasticity as well as a potential therapeutic target for attenuation of pulmonary fibrosis.
Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.
Abstract-The excitability of pulmonary artery smooth muscle cells (PASMC) is regulated by potassium (K ϩ ) conductances. Although studies suggest that background K ϩ currents carried by 2-pore domain K ϩ channels are important regulators of resting membrane potential in PASMC, their role in human PASMC is unknown. Our study tested the hypothesis that TASK-1 leak K ϩ channels contribute to the K ϩ current and resting membrane potential in human PASMC. We used the whole-cell patch-clamp technique and TASK-1 small interfering RNA (siRNA). Noninactivating K ϩ current performed by TASK-1 K ϩ channels were identified by current characteristics and inhibition by anandamide and acidosis (pH 6.3), each resulting in significant membrane depolarization. Moreover, we showed that TASK-1 is blocked by moderate hypoxia and activated by treprostinil at clinically relevant concentrations. This is mediated via protein kinase A (PKA)-dependent phosphorylation of TASK-1. To further confirm the role of TASK-1 channels in regulation of resting membrane potential, we knocked down TASK-1 expression using TASK-1 siRNA. The knockdown of TASK-1 was reflected by a significant depolarization of resting membrane potential. Treatment of human PASMC with TASK-1 siRNA resulted in loss of sensitivity to anandamide, acidosis, alkalosis, hypoxia, and treprostinil. These results suggest that (1) TASK-1 is expressed in human PASMC; (2) TASK-1 is hypoxia-sensitive and controls the resting membrane potential, thus implicating an important role for TASK-1 K ϩ channels in the regulation of pulmonary vascular tone; and (3) treprostinil activates TASK-1 at clinically relevant concentrations via PKA, which might represent an important mechanism underlying the vasorelaxing properties of prostanoids and their beneficial effect in vivo. Key Words: pulmonary circulation Ⅲ potassium channels Ⅲ TASK-1 Ⅲ treprostinil Ⅲ hypoxic pulmonary vasoconstriction T he membrane potential of pulmonary artery smooth muscle cells (PASMC) is an important regulator of arterial tone. These cells have a resting membrane potential of approximately Ϫ65 to Ϫ50 mV in vitro, close to the predicted equilibrium potential for potassium (K ϩ ) ions. The opening of K ϩ channels in the PASMC membrane increases K ϩ efflux, which causes membrane hyperpolarization. This closes voltage-dependent Ca 2ϩ channels, decreasing Ca 2ϩ entry and leading to vasodilatation. Conversely, inhibition of K ϩ channels causes membrane depolarization, Ca 2ϩ entry, cell contraction, and vasoconstriction.Background or leak K ϩ -selective channels, as defined by a lack of time and voltage dependency, play an essential role in setting the resting membrane potential and input resistance in excitable cells. Two-pore domain K ϩ (2-PK) channels have been shown to conduct several leak K ϩ currents. The activity of 2-PK channels is strongly regulated by protons, protein kinases, and hypoxia. Alteration of K ϩ conductance can influence cellular activity via membrane potential changes.Both RT-PCR and Northern blot analyses p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.