The Cross‐Track Infrared Sounder (CrIS) is a Fourier Transform Michelson interferometer instrument launched on board the Suomi National Polar‐Orbiting Partnership (Suomi NPP) satellite on 28 October 2011. CrIS provides measurements of Earth view interferograms in three infrared spectral bands at 30 cross‐track positions, each with a 3 × 3 array of field of views. The CrIS ground processing software transforms the measured interferograms into calibrated and geolocated spectra in the form of Sensor Data Records (SDRs) that cover spectral bands from 650 to 1095 cm−1, 1210 to 1750 cm−1, and 2155 to 2550 cm−1 with spectral resolutions of 0.625 cm−1, 1.25 cm−1, and 2.5 cm−1, respectively. During the time since launch a team of subject matter experts from government, academia, and industry has been engaged in postlaunch CrIS calibration and validation activities. The CrIS SDR product is defined by three validation stages: Beta, Provisional, and Validated. The product reached Beta and Provisional validation stages on 19 April 2012 and 31 January 2013, respectively. For Beta and Provisional SDR data, the estimated absolute spectral calibration uncertainty is less than 3 ppm in the long‐wave and midwave bands, and the estimated 3 sigma radiometric uncertainty for all Earth scenes is less than 0.3 K in the long‐wave band and less than 0.2 K in the midwave and short‐wave bands. The geolocation uncertainty for near nadir pixels is less than 0.4 km in the cross‐track and in‐track directions.
[1] The Cross-track Infrared Sounder (CrIS) is the high spectral resolution spectroradiometer on the Suomi National Polar-Orbiting Partnership (NPP) satellite, providing operational observations of top-of-atmosphere thermal infrared radiance spectra for weather and climate applications. This paper describes the CrIS radiometric calibration uncertainty based on prelaunch and on-orbit efforts to estimate calibration parameter uncertainties, and provides example results of recent postlaunch validation efforts to assess the predicted uncertainty. Prelaunch radiometric uncertainty (RU) estimates computed for the laboratory test environment are less than~0.2 K 3 sigma for blackbody scene temperatures above 250 K, with primary uncertainty contributions from the calibration blackbody temperature, calibration blackbody reflected radiance terms, and detector nonlinearity. Variability of the prelaunch RU among the longwave band detectors and midwave band detectors is due to different levels of detector nonlinearity. A methodology for on-orbit adjustment of nonlinearity correction parameters to reduce the overall contribution to RU and to reduce field of view (FOV)-to-FOV variability is described. The resulting on-orbit RU estimates for Earth view spectra are less than 0.2 K 3 sigma in the midwave and shortwave bands, and less than 0.3 K 3 sigma in the longwave band. Postlaunch validation efforts to assess the radiometric calibration of CrIS are underway; validation results to date indicate that the on-orbit RU estimates are representative. CrIS radiance products are expected to reach "Validated" status in early 2014.
[1] The ability to accurately validate high-spectral resolution infrared radiance measurements from space using comparisons with a high-altitude aircraft spectrometer has been successfully demonstrated. The demonstration is based on a 21 November 2002 underflight of the AIRS on the NASA Aqua spacecraft by the Scanning-HIS on the NASA ER-2 high-altitude aircraft. A comparison technique which accounts for the different viewing geometries and spectral characteristics of the two sensors is introduced, and accurate comparisons are made for AIRS channels throughout the infrared spectrum. Resulting brightness temperature differences are found to be 0.2 K or less for most channels. Both the AIRS and the Scanning-HIS calibrations are expected to be very accurate (formal 3-sigma estimates are better than 1 K absolute brightness temperature for a wide range of scene temperatures), because high spectral resolution offers inherent advantages for absolute calibration and because they make use of high-emissivity cavity blackbodies as onboard radiometric references. AIRS also has the added advantage of a cold space view, and the Scanning-HIS calibration has recently benefited from the availability of a zenith view from high-altitude flights. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecraft (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. The validation role for accurately calibrated aircraft spectrometers also includes application to broadband instruments and linking the calibrations of similar instruments on different spacecraft. It is expected that aircraft flights of the Scanning-HIS and its close cousin the NPOESS Airborne Sounder Test Bed (NAST) will be used to check the longterm stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the missions.
Exploiting the inherent redundancy in hyperspectral observations, Principle Component Analysis (PCA) is a simple yet very powerful tool not only for noise filtering and lossy compression, but also for the characterization of sensor noise and other variable artifacts using Earth scene data. Our approach for dependent set PCA of radiance spectra from the Atmospheric Infrared Sounder (AIRS) on NASA Aqua is presented. Aspects of the analyses include 1) estimation of NEDT and comparisons to values derived from on-board blackbodies, 2) estimation of the signal dependence of NEDN, 3) estimation of the spectrally correlated component of NEDT, 4) investigation of non-Gaussian noise behavior, and 5) inspection of individual PCs. The results are generally consistent with results obtained prelaunch and on-orbit using blackbody and space view data. Specific findings include: 1) PCA estimates of AIRS spectrally random and spectrally correlated NEDN compare well with estimates computed from blackbody and space views, 2) the signal dependence of AIRS NEDN is accurately parameterized in terms of scene radiance, 3) examination of the reconstruction error allows non-Gaussian phenomenon such as popping to be characterized, and 4) inspection of the PCs and filtered spectra is a powerful technique for diagnosing variable artifacts in hyperspectral data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.