We have successfully developed transparent polycrystalline Gd2Hf2O7 ceramics with high in‐line transparency. A sol–gel process was used to synthesize the Gd2Hf2O7 powder. Simultaneous thermal gravimetric analysis and differential thermal analysis (TGA/DTA) was used to identify the decomposition sequence as a function of temperature for the as‐synthesized sol–gel powders. The calcined powder is single phase and was formed with an estimated average particle size of 120 nm. Crystallization was confirmed by x‐ray diffraction (XRD) and a single phase was achieved by calcining at 1000°C. The calcined powders were hot‐pressed at 1500°C to achieve >95% theoretical density with closed pore structure followed by a hot isostatic pressing at 1500°C at 207 MPa to achieve a fully dense structure. Microstructural characterization shows a uniform grain size distribution with an average grain size of about 11 μm. In‐line transmission measurements revealed high transparency in the red and infrared. Dielectric properties remain stable with relative permittivity values around 180 and loss tangents less than 0.005 up to 350°C. Thermal conductivity was measured to be ~1.8 W/m°K at room temperature, decreasing to ~1.5 W/m°K by 500°C.
Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. Here we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm3) during melting and solidification. We also show complementary x-ray results from a small volume (<1 mm3), bridging four orders of magnitude. Real-time imaging will enable efficient process development and the control of structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models.
Transparent polycrystalline Gd 3 TaO 7 ceramics were successfully developed. A sol-gel process was used to synthesize Gd 3 TaO 7 powder with a uniform composition and an estimated average particle size of 100 nm. Simultaneous thermal gravimetric analysis and differential thermal analysis (TGA/DTA) was used to identify the decomposition sequence as a function of temperature for the assynthesized sol-gel powders. Crystallization was confirmed by X-ray diffraction (XRD) and a single phase was achieved by calcining at 1000°C. The calcined powders were hot-pressed at 1400°C to achieve >96% theoretical density with closed pore structure followed by a hot isostatic pressing at 1400°C at 207 MPa to achieve a fully dense structure. Microstructural characterization shows a uniform grain size distribution with an average grain size of about 7 lm. In-line transmission measurements revealed high transparency in the red and infrared.Thermal conductivity was measured to be >1.6 W/mK at room temperature, decreasing to~1.3 W/mK by 500°C. Dielectric properties remain stable with relative permittivity values just above 200 and loss tangents <0.005 up to 350°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.