Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi).
Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Herein, we describe the preparation of (NBu4 )Am[S2 P((t) Bu2 C12 H6 )]4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd(III) ) and an isoelectronic one (Eu(III) ). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu(III) and Nd(III) complexes revealed subtle electronic differences between the complexes of Am(III) and the lanthanides.
Taken together, these data implicate L(py) as a valuable chelating agent for the delivery of (213)Bi. Its selectivity for Bi(3+) and rapid and stable labeling properties warrant further investigation and biological studies.
Rhenium-186g (T
1/2= 89.2 h) is a β
− emitter suitable for therapeutic applications. Current production methods rely on reactor production via
185Re(n,γ) which results in low specific activities, thereby limiting its use. Production by p,d activation of enriched 186W results in a 186gRe product with a higher specific activity, allowing it to be used for targeted therapy with limited receptors. A test target consisting of pressed, sintered natWO3 was proton irradiated at Los Alamos (LANL-IPF) to evaluate product yield and impurities, irradiation parameters and wet chemical Re recovery for proof-of-concept for bulk production of 186gRe. We demonstrated isolation of 186gRe in 97% yield from irradiated natWO3 targets within 12 h of end of bombardment (EOB) via an alkaline dissolution followed by anion exchange. The recovery process has potential for automation, and WO3 can be easily recycled for recurrent irradiations. A 186gRe batch yield of 42.7 ± 2.2 μCi/μAh or 439 ± 23 MBq/C was obtained after 24 h in an 18.5 μA proton beam. The target entrance energy was determined to be 15.6 MeV. The specific activity of 186gRe at EOB was measured to be 1.9 kCi (70.3 TBq) mmol−1, which agrees well with the result of a previous 185,186mRe co-production EMPIRE and TALYS modeling study assuming similar conditions. Utilizing enriched 186WO3, we anticipate that a proton beam of 250 μA for 24 h will provide batch yields of 256 mCi (9.5 GBq) of 186gRe at EOB with specific activities even higher than 1.9 kCi (70.3 TBq) mmol−1, suitable for therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.