SUMMARY How cells control their size and maintain size homeostasis is a fundamental open question. Cell-size homeostasis has been discussed in the context of two major paradigms: sizer, in which the cell actively monitors its size and triggers the cell cycle once it reaches a critical size, and timer, in which the cell attempts to grow for a specific amount of time before division. These paradigms, in conjunction with the “growth law” [1] and the quantitative bacterial cell cycle model [2], inspired numerous theoretical models [3-9] and experimental investigations from growth [10,11] to cell cycle and size control [12–15]. However, experimental evidence involved difficult-to-verify assumptions or population-averaged data, which allowed different interpretations [1–5,16–20] or limited conclusions [4–9]. In particular, population-averaged data and correlations are inconclusive as the averaging process masks causal effects at the cellular level. In this work, we extended a microfluidic “mother machine” [21] and monitored hundreds of thousands of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis cells under a wide range of steady-state growth conditions. Our combined experimental results and quantitative analysis demonstrate that cells add a constant volume each generation irrespective of their newborn sizes, conclusively supporting the so-called constant Δ model. This model was introduced for E. coli [6,7] and recently revisited [9], but experimental evidence was limited to correlations. This “adder” principle quantitatively explains experimental data at both the population and single-cell levels, including the origin and the hierarchy of variability in the size-control mechanisms, and how cells maintain size homeostasis.
Synthetically engineered genetic circuits can perform a wide range of tasks but generally with lower accuracy than natural systems. Here we revisited the first synthetic genetic oscillator, the repressilator1, and modified it based on principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. This created highly regular and robust oscillations. Some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results show that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.