Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
The FLASHForward project at DESY is a pioneering plasma--wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free--electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness--beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi--TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program.
Since 2016, the two free-electron laser (FEL) lines FLASH1 and FLASH2 have been run simultaneously for users at DESY in Hamburg. With the installation of variable gap undulators in the new FLASH2 FEL line, many new possibilities have opened up in terms of photon parameters for experiments. What has been tested so far is post-saturation tapering, reverse tapering, harmonic lasing, harmonic lasing self-seeding and two-color lasing. At the moment, we are working on concepts to enhance the capabilities of the FLASH facility even further. A major part of the upgrade plans, known as FLASH2020, will involve the exchange of the fixed gap undulators in FLASH1 and the implementation of a new flexible undulator scheme aimed at providing coherent radiation for multi-color experiments over a broad wavelength range. The recent achievements in FLASH2 and the current status of plans for the further development of the facility are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.