Objective Infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) can lead to severe pneumonia, but also thrombotic complications and non‐pulmonary organ failure. Recent studies suggest intravascular neutrophil activation and subsequent immune cell–triggered immunothrombosis as a central pathomechanism linking the heterogenous clinical picture of coronavirus disease 2019 (COVID‐19). We sought to study whether immunothrombosis is a pathognomonic factor in COVID‐19 or a general feature of (viral) pneumonia, as well as to better understand its upstream regulation. Approach and results By comparing histopathological specimens of SARS‐CoV‐2 with influenza‐affected lungs, we show that vascular neutrophil recruitment, NETosis, and subsequent immunothrombosis are typical features of severe COVID‐19, but less prominent in influenza pneumonia. Activated neutrophils were typically found in physical association with monocytes. To explore this further, we combined clinical data of COVID‐19 cases with comprehensive immune cell phenotyping and bronchoalveolar lavage fluid scRNA‐seq data. We show that a HLADR low CD9 low monocyte population expands in severe COVID‐19, which releases neutrophil chemokines in the lungs, and might in turn explain neutrophil expansion and pulmonary recruitment in the late stages of severe COVID‐19. Conclusions Our data underline an innate immune cell axis causing vascular inflammation and immunothrombosis in severe SARS‐CoV‐2 infection.
The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against β-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.
Infection with SARS‐CoV‐2 is associated with thromboinflammation, involving thrombotic and inflammatory responses, in many COVID‐19 patients. In addition, immune dysfunction occurs in patients characterised by T cell exhaustion and severe lymphopenia. We investigated the distribution of phosphatidylserine (PS), a marker of dying cells, activated platelets and platelet‐derived microparticles (PMP), during the clinical course of COVID‐19. We found an unexpectedly high amount of blood cells loaded with PS + PMPs for weeks after the initial COVID‐19 diagnosis. Elevated frequencies of PS + PMP + PBMCs correlated strongly with increasing disease severity. As a marker, PS outperformed established laboratory markers for inflammation, leucocyte composition and coagulation, currently used for COVID‐19 clinical scoring. PS + PMPs preferentially bound to CD8 + T cells with gene expression signatures of proliferating effector rather than memory T cells. As PS + PMPs carried programmed death‐ligand 1 (PD‐L1), they may affect T cell expansion or function. Our data provide a novel marker for disease severity and show that PS, which can trigger the blood coagulation cascade, the complement system, and inflammation, resides on activated immune cells. Therefore, PS may serve as a beacon to attract thromboinflammatory processes towards lymphocytes and cause immune dysfunction in COVID‐19.
Background: Some recipients of ChAdOx1 nCoV-19 COVID-19 Vaccine AstraZeneca develop antibody-mediated vaccine-induced thrombotic thrombocytopenia (VITT), associated with cerebral venous and other unusual thrombosis resembling autoimmune heparin-induced thrombocytopenia. A prothrombotic predisposition is also observed in Covid-19. We explored whether antibodies against the SARS-CoV-2 spike protein induced by Covid-19 cross-react with platelet factor 4 (PF4/CXLC4), the protein targeted in both VITT and autoimmune heparin-induced thrombocytopenia.Methods: Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared via prediction tools and 3D modelling software (IMED, SIM, MacMYPOL). Sera from 222 PCR-confirmed Covid-19 patients from five European centers were tested by PF4/heparin ELISA, heparin-dependent and PF4-dependent platelet activation assays. Immunogenic reactivity of purified anti-PF4 and anti-PF4/heparin antibodies from patients with VITT were tested against recombinant SARS-CoV-2 spike protein. Results: Three motifs within the spike protein sequence share a potential immunogenic epitope with PF4. Nineteen of 222 (8.6%) Covid-19 patient sera tested positive in the IgG-specific PF4/heparin ELISA, none of which showed platelet activation in the heparin-dependent activation assay, including 10 (4.5%) of the 222 Covid-19 patients who developed thromboembolic complications. Purified anti-PF4 and anti-PF4/heparin antibodies from two VITT patients did not show cross-reactivity to recombinant SARS-CoV-2 spike protein. Conclusions: The antibody responses to PF4 in SARS-CoV-2 infection and after vaccination with COVID-19 Vaccine AstraZeneca differ. Antibodies against SARS-CoV-2 spike protein do not cross-react with PF4 or PF4/heparin complexes through molecular mimicry. These findings make it very unlikely that the intended vaccine-induced immune response against SARS-CoV-2 spike protein would itself induce VITT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.