BackgroundBiopsy is a crucial step within the diagnostic cascade in patients with suspected bone or soft tissue sarcoma. Open biopsy is still considered the gold standard. However, recent literature suggests similar results for percutaneous biopsy techniques. Therefore, the aim of this retrospective analysis was to compare open and percutaneous core needle biopsy (CNB) regarding their accuracy in diagnosis of malignant musculoskeletal lesions.MethodsFrom January 2007 to December 2009, all patients with suspected malignant primary bone or soft tissue tumour undergoing a percutaneous CNB or open biopsy and a subsequent tumour resection at our department were identified and enrolled. Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV) and diagnostic accuracy were calculated for both biopsy techniques and compared using Fisher’s exact test.ResultsA total of 77 patients were identified and enrolled in this study. Sensitivity, specificity, PPV, NPV and diagnostic accuracy were 100% for CNB in bone tumours. Sensitivity (95.5%), NPV (91.7%) and diagnostic accuracy (93.3%) for open biopsy in bone tumours showed slightly inferior results without statistical significance (p > 0.05). In soft tissue tumours favourable results were obtained in open biopsies compared to CNB with differences regarding sensitivity (100% vs. 81.8%, p = 0.5), NPV (100% vs. 50%, p = 0.09) and diagnostic accuracy (100% vs. 84.6%, p = 0,19) without statistical significance. The overall diagnostic accuracy was 92.9% for CNB and 98.0% for open biopsy (p = 0.55). A specific diagnosis could be obtained in 84.2% and 93.9%, respectively (p = 0.34).ConclusionIn our study we found moderately inferior results for the percutaneous biopsy technique compared to open biopsy in soft tissue tumours whereas almost equal results were obtained for both biopsy techniques for bone tumours. Thus, CNB is a safe, minimal invasive and cost-effective technique for diagnosing bony lesions. In soft tissue masses, the indication for percutaneous core needle biopsy needs to be made carefully by an experienced orthopaedic oncologist with respect to the suspected entity, size of necrosis and location of the lesion to avoid incorrect or deficient results.
Deregulated apoptosis is an identifying feature of myelodysplastic syndromes (MDS). Whereas apoptosis is increased in the bone marrow (BM) of low-risk MDS patients, progression to high-risk MDS correlates with an acquired resistance to apoptosis and an aberrant expression of BCL-2 proteins. To overcome the acquired apoptotic resistance in high-risk MDS, we investigated the induction of apoptosis by inhibition of pro-survival BCL-2 proteins using the BCL-2/-XL/-W inhibitor ABT-737 or the BCL-2-selective inhibitor ABT-199. We characterized a cohort of 124 primary human BM samples from MDS/secondary acute myeloid leukemia (sAML) patients and 57 healthy, age-matched controls. Inhibition of anti-apoptotic BCL-2 proteins was specifically toxic for BM cells from high-risk MDS and sAML patients, whereas low-risk MDS or healthy controls remained unaffected. Notably, ABT-737 or ABT-199 treatment was capable of targeting the MDS stem/progenitor compartment in high-risk MDS/sAML samples as shown by the reduction in CD34(+) cells and the decreased colony-forming capacity. Elevated expression of MCL-1 conveyed resistance against both compounds. Protection by stromal cells only partially inhibited induction of apoptosis. Collectively, our data show that the apoptotic resistance observed in high-risk MDS/sAML cells can be overcome by the ABT-737 or ABT-199 treatment and implies that BH3 mimetics might delay disease progression in higher-risk MDS or sAML patients.
BackgroundDiagnosis of a low-grade periprosthetic joint infection (PJI) prior to revision surgery can be challenging, despite paramount importance for further treatment. Arthroscopic biopsy of synovial and periprosthetic tissue with subsequent microbiological and histological examination can be beneficial but its specific diagnostic value has not been clearly defined.Methods20 consecutive patients who underwent percutaneous synovial fluid aspiration as well as arthroscopic biopsy due to suspected PJI of the hip and subsequent one- or two-stage revision surgery at our institution between January 2012 and May 2015 were enrolled. Indication was based on the criteria (1) history of PJI and increased levels of erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP), (2) suspicious cell count and differential but negative bacterial culture in synovial aspirate, (3) early loosening (
Abstract:Background: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to assess the inactivation of clinically relevant bacteria on biomaterials and human bone by high hydrostatic pressure.Methods: Bacterial suspensions of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecium, implants covered with infected blood, human bone infected in vitro, and biopsies of patients with chronic osteomyelitis were subjected to different protocols of high hydrostatic pressure up to 600 MPa. Bacterial survival after high hydrostatic pressure treatment was determined and compared with bacterial growth in untreated controls.Results: S. aureus and P. aeruginosa in suspension were completely inactivated by high hydrostatic pressure (> 5log levels), whereas E. faecium showed barotolerance up to 600 MPa. Blood and adherence to metal implants did not significantly alter inactivation of bacteria, and complete disinfection was achieved with barotolerant bacteria (S. aureus and P. aeruginosa). However, osteoarthritic bone demonstrated a non-homogeneous baroprotective effect, with single bone samples resistant to treatment resulting in unaltered bacterial growth, and complete disinfection of artificially infected bone specimens was achieved in 66% for S. aureus, 60% for P. aeruginosa and 0% for E. faecium. Human bone samples of patients with chronic osteomyelitis could be completely disinfected in 2 of 37 cases. Conclusion:High hydrostatic pressure offers new perspectives for disinfection of sensitive biomaterials and bone grafts, and contamination by blood did not significantly affect bacterial inactivation rates. However, a significant baroprotective effect was demonstrated in bone. Effectiveness is currently limited to colonization and / or infection with barosensitive micro-organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.