Influenza-related complications continue to be a major cause of mortality worldwide. Due to unclear mechanisms, a substantial number of influenza-related deaths result from bacterial superinfections, particularly secondary pneumococcal pneumonia. Here, we report what we believe to be a novel mechanism by which influenza-induced type I IFNs sensitize hosts to secondary bacterial infections. Influenza-infected mice deficient for type I IFN-α/β receptor signaling (Ifnar -/-mice) had improved survival and clearance of secondary Streptococcus pneumoniae infection from the lungs and blood, as compared with similarly infected wild-type animals. The less effective response in wild-type mice seemed to be attributable to impaired production of neutrophil chemoattractants KC (also known as Cxcl1) and Mip2 (also known as Cxcl2) following secondary challenge with S. pneumoniae. This resulted in inadequate neutrophil responses during the early phase of host defense against secondary bacterial infection. Indeed, influenza-infected wild-type mice cleared secondary pneumococcal pneumonia after pulmonary administration of exogenous KC and Mip2, whereas neutralization of Cxcr2, the common receptor for KC and Mip2, reversed the protective phenotype observed in Ifnar -/-mice. These data may underscore the importance of the type I IFN inhibitory pathway on CXC chemokine production. Collectively, these findings highlight what we believe to be a novel mechanism by which the antiviral response to influenza sensitizes hosts to secondary bacterial pneumonia.
Antibody-mediated rejection (AMR) is a recognized cause of allograft dysfunction in lung transplant recipients. Unlike AMR in other solid-organ transplant recipients, there are no standardized diagnostic criteria or an agreed-upon definition. Hence, a working group was created by the International Society for Heart and Lung Transplantation with the aim of determining criteria for pulmonary AMR and establishing a definition. Diagnostic criteria and a working consensus definition were established. Key diagnostic criteria include the presence of antibodies directed toward donor human leukocyte antigens and characteristic lung histology with or without evidence of complement 4d within the graft. Exclusion of other causes of allograft dysfunction increases confidence in the diagnosis but is not essential. Pulmonary AMR may be clinical (allograft dysfunction which can be asymptomatic) or sub-clinical (normal allograft function). This consensus definition will have clinical, therapeutic and research implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.