The National Spherical Torus Experiment (NSTX) is being built at PPPL to test the fusion physics principles for the ST concept at the MA level. The NSTX nominal plasma parameters are R 0 = 85 cm, a = 67 cm, R/a ³ 1.26, B T = 3 kG, I p = 1 MA, q 95 = 14, elongation k £ 2.2, triangularity d £ 0.5, and plasma pulse length of up to 5 sec. The plasma heating / current drive (CD) tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes including very high plasma beta, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well, and high pressure driven sheared flow. In addition, the NSTX program plans to explore fully noninductive plasma start-up as well as a dispersive scrape-off layer for heat and particle flux handling. MotivationA broad range of encouraging advances has been made in the exploration of the Spherical Torus (ST) concept. 1 Such advances include promising experimental data from pioneering experiments, theoretical predictions, near-term fusion energy development projections such as the Volume Neutron Source 2 , and future applications such as power plant studies 3 . Recently, the START device has achieved a very high toroidal beta b T » 40% regime with b N » 5.0 at low q 95 » 3. 4 The National Spherical Torus Experiment (NSTX) is being built at PPPL to test the fusion physics principles for the ST concept at the MA level. 5 The NSTX device/plasma configuration allows the plasma shaping factor, I p q 95 / a B , to reach as high as 80 an order of magnitude greater than that achieved in conventional high aspect ratio tokamaks. The key physics objective of NSTX is to attain an advanced ST regime; i.e., simultaneous ultra high beta (b), high confinement, and high bootstrap current fraction (f bs ). 6 This regime is considered to be essential for the development of an economical ST power-plant because it minimizes the recirculating power and power plant core size. Other NSTX mission elements crucial for ST power plant development are the demonstration at the MA level of fully noninductive operation and the development of acceptable power and particle handling concepts. NSTX Facility Design Capability and Technology ChallengesThe NSTX facility is designed to achieve the NSTX mission with the following capabilities: ¥ I p = 1 MA for low collisionality at relevant densities, ¥ R/a ³ 1.26, including OH solenoid and coaxial helicity injection 7 (CHI) for startup,
The National Spherical Torus Experiment ͑NSTX͒ has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic ͑MHD͒ modes ͑e.g., ideal external kinks and resistive wall modes͒, edge localized modes ͑ELMs͒, bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving  t ϳ 40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation ϳ 2.8 and triangularity ␦ ϳ 0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S ϵ q 95 I p / ͑aB t ͒, which has been observed at large values of the S ϳ 37͓MA/ ͑m·T͔͒ on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed I p . The achievement of strong shaping has enabled operation with 1 s pulses with I p = 1 MA, and for 1.6 s for I p = 700 kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion.
The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for future spherical torus (ST) devices and ITER. Plasma durations up to 1.6 s (five current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while simultaneously achieving β T and β N values of 17% and 5.7 (%m T MA −1 ), respectively. A newly available motional Stark effect diagnostic has enabled validation of currentdrive sources and improved the understanding of NSTX 'hybrid'-like scenarios. In MHD research, ex-vessel radial field coils have been utilized to infer and correct intrinsic EFs, provide rotation control and actively stabilize the n = 1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence research, the low aspect ratio and a wide range of achievable β in the NSTX provide unique data for confinement scaling studies, and a new microwave scattering diagnostic is being used to investigate turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large toroidal Alfven eigenmodes (TAEs) analogous to the 'sea-of-TAE' modes predicted for ITER, and three-wave coupling processes have been observed for the first time. In boundary physics research, advanced shape control has enabled studies of the role of magnetic balance in H-mode access and edge localized mode stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode-compatible radiative divertor, and lithium conditioning has demonstrated particle pumping and results in improved thermal confinement. Finally, non-solenoidal plasma start-up experiments have achieved plasma currents of 160 kA on closed magnetic flux surfaces utilizing coaxial helicity injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.