Northern cod, comprising populations of Atlantic cod (Gadus morhua) off southern Labrador and eastern Newfoundland, supported major fisheries for hundreds of years. But in the late 1980s and early 1990s, northern cod underwent one of the worst collapses in the history of fisheries. The Canadian government closed the directed fishing for northern cod in July 1992, but even after a decade-long offshore moratorium, population sizes remain historically low. Here we show that, up until the moratorium, the life history of northern cod continually shifted towards maturation at earlier ages and smaller sizes. Because confounding effects of mortality changes and growth-mediated phenotypic plasticity are accounted for in our analyses, this finding strongly suggests fisheries-induced evolution of maturation patterns in the direction predicted by theory. We propose that fisheries managers could use the method described here as a tool to provide warning signals about changes in life history before more overt evidence of population decline becomes manifest.
Isozyme analysis at 24 loci was carried out on anisakid nematodes of the Anisakis simplex complex, recovered from various intermediate/paratenic (squid, fish) and definitive (marine mammals) hosts from various parts of the world. A number of samples were found to belong to A. simplex sensu stricto and Anisakis pegreffii, widely extending the geographic ranges and the number of hosts of these 2 species. In addition, a new distinct gene pool was detected, showing different alleles with respect to A. simplex s. str and A. pegreffii at 5 diagnostic loci (99% level). Samples with this gene pool were assigned to a new species, provisionally labeled A. simplex C. Reproductive isolation between A. simplex C and the other 2 Anisakis species was directly assessed by the lack of hybrid and recombinant genotypes in mixed samples from sympatric areas, i.e., Pacific Canada for A. simplex C+A. simplex s. str., South Africa and New Zealand for A. simplex C+A. pegreffii, even when such samples were recovered from the same individual host. Similar levels of genetic divergence were observed among the three species (DNei from 0.36 to 0.45). At the intraspecific level, Canadian Pacific and Austral populations of A. simplex C were found to be genetically rather differentiated from one another (average DNei = 0.08), contrasting with the remarkable genetic homogeneity detected within both A. simplex s. str. and A. pegreffii (average DNei about 0.01). Accordingly, a lower amount of gene flow was estimated within A. simplex C (Nm = 1.6) than within the other 2 species (Nm = 5.4 and 17.7, respectively). Anisakis simplex C showed the highest average values of genetic variability with respect to both A. simplex s. str. and A. pegreffii, e.g., expected mean heterozygosity. Hr = 0.23, 0.16, and 0.11, respectively, in the 3 species. Data on geographic distribution and hosts of the 3 members so far detected in the A. simplex complex are given. Their ecological niche is markedly differentiated, with a low proportion of hosts shared. Intermediate and definitive hosts of A. simplex s. str. and A. pegreffii appear to belong to distinct food webs, benthodemersal, and pelagic, respectively; this would lead to different transmission pathways for the parasites.
By estimating probabilistic reaction norms for age and size at maturation, we show that maturation schedules of Atlantic cod (Gadus morhua) off Labrador and Newfoundland shifted toward earlier ages and smaller sizes during the late 1980s and early 1990s, when these populations underwent a severe collapse in biomass and subsequently were closed for directed commercial fishing. We also demonstrate that this trend towards maturation at younger ages and smaller sizes is halted and even shows signs of reversal during the closure of the fisheries. In addition, our analysis reveals that males tend to mature earlier and at a smaller size than females and that maturation age and size decrease with increasing latitude. Importantly, the maturation reaction norms presented here are robust to variation in survival and growth (through phenotypic plasticity) and are thus strongly indicative of rapid evolutionary changes in cod maturation as well as of spatial and sex-specific genetic variation. We therefore suggest that maturation reaction norms can provide helpful reference points for managing harvested populations with evolving life histories.Résumé : L'estimation de normes probabilistes de réaction pour l'âge et la taille à la maturation nous permet de démontrer que les calendriers de maturation de la morue franche (Gadus morhua) au large du Labrador et de TerreNeuve ont glissé vers des âges plus précoces et des tailles plus basses au cours de la fin des années 1980 et du début des années 1990; à ce moment, ces populations ont connu un effondrement important de leur biomasse, après quoi il y a eu interdiction de la pêche commerciale ciblée. Nous démontrons aussi que la tendance vers une maturation à des âges plus précoces et à des tailles plus petites s'est arrêtée et a même montré des signes de retour en arrière durant la période d'interdiction de la pêche. De plus, notre analyse démontre que les mâles tendent à atteindre la maturité plus jeunes et plus petits que les femelles et que l'âge et la taille à la maturation décroissent en fonction de l'augmentation de la latitude. Il est important de noter que les normes de réaction de maturation que nous présentons sont robustes vis-à-vis la variation de la survie et de la croissance (via la plasticité phénotypique) et qu'elles indiquent ainsi fortement l'existence de changements évolutifs rapides dans la maturation des morues, ainsi que des variations génétiques en fonction de l'espace et du sexe. Nous croyons donc que les normes de réaction de la maturation peuvent fournir des points de référence utiles pour la gestion de populations exploitées à cycle biologique en cours de modification.[Traduit par la Rédaction] Olsen et al. 823
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.