Parental environmental factors, including diet, body composition, metabolism, and stress, affect the health and chronic disease risk of people throughout their lives, as captured in the Developmental Origins of Health and Disease concept. Research across the epidemiological, clinical, and basic science fields has identified the period around conception as being crucial for the processes mediating parental influences on the health of the next generation. During this time, from the maturation of gametes through to early embryonic development, parental lifestyle can adversely influence long-term risks of offspring cardiovascular, metabolic, immune, and neurological morbidities, often termed developmental programming. We review periconceptional induction of disease risk from four broad exposures: maternal overnutrition and obesity; maternal undernutrition; related paternal factors; and the use of assisted reproductive treatment. Studies in both humans and animal models have demonstrated the underlying biological mechanisms, including epigenetic, cellular, physiological, and metabolic processes. We also present a meta-analysis of mouse paternal and maternal protein undernutrition that suggests distinct parental periconceptional contributions to postnatal outcomes. We propose that the evidence for periconceptional effects on lifetime health is now so compelling that it calls for new guidance on parental preparation for pregnancy, beginning before conception, to protect the health of offspring.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Newcastle University ePrints -eprint.ncl.ac.uk Lean MEJ,
The Diabetes Remission Clinical Trial reported return and persistence of non-diabetic blood glucose control in 46% of people with type 2 diabetes of up to 6 years duration. Detailed metabolic studies were performed on a subgroup (intervention, n = 64; control, n = 26). In the intervention group, liver fat content decreased (16.0% ± 1.3% to 3.1% ± 0.5%, p < 0.0001) immediately after weight loss. Similarly, plasma triglyceride and pancreas fat content decreased whether or not glucose control normalized. Recovery of first-phase insulin response (0.04[-0.05-0.32] to 0.11[0.0005-0.51] nmol/min/m, p < 0.0001) defined those who returned to non-diabetic glucose control and this was durable at 12 months (0.11[0.005-0.81] nmol/min/m, p = 0.0001). Responders were similar to non-responders at baseline but had shorter diabetes duration (2.7 ± 0.3 versus 3.8 ± 0.4 years; p = 0.02). This study demonstrates that β cell ability to recover long-term function persists after diagnosis, changing the previous paradigm of irreversible loss of β cell function in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.