ObjectiveWe examined whether plasma β-amyloid (Aβ)42/Aβ40, as measured by a high-precision assay, accurately diagnosed brain amyloidosis using amyloid PET or CSF p-tau181/Aβ42 as reference standards.MethodsUsing an immunoprecipitation and liquid chromatography–mass spectrometry assay, we measured Aβ42/Aβ40 in plasma and CSF samples from 158 mostly cognitively normal individuals that were collected within 18 months of an amyloid PET scan.ResultsPlasma Aβ42/Aβ40 had a high correspondence with amyloid PET status (receiver operating characteristic area under the curve [AUC] 0.88, 95% confidence interval [CI] 0.82–0.93) and CSF p-tau181/Aβ42 (AUC 0.85, 95% CI 0.79–0.92). The combination of plasma Aβ42/Aβ40, age, and APOE ε4 status had a very high correspondence with amyloid PET (AUC 0.94, 95% CI 0.90–0.97). Individuals with a negative amyloid PET scan at baseline and a positive plasma Aβ42/Aβ40 (<0.1218) had a 15-fold greater risk of conversion to amyloid PET-positive compared to individuals with a negative plasma Aβ42/Aβ40 (p = 0.01).ConclusionsPlasma Aβ42/Aβ40, especially when combined with age and APOE ε4 status, accurately diagnoses brain amyloidosis and can be used to screen cognitively normal individuals for brain amyloidosis. Individuals with a negative amyloid PET scan and positive plasma Aβ42/Aβ40 are at increased risk for converting to amyloid PET-positive. Plasma Aβ42/Aβ40 could be used in prevention trials to screen for individuals likely to be amyloid PET-positive and at risk for Alzheimer disease dementia.Classification of evidenceThis study provides Class II evidence that plasma Aβ42/Aβ40 levels accurately determine amyloid PET status in cognitively normal research participants.
Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoas-say technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, withinperson analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker.Reprints and permissions information is available at www.nature.com/reprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.