Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
Objective Rett syndrome (RTT) is a severe neurodevelopmental disease that affects approximately 1 in 10,000 live female births and is often caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Despite distinct clinical features, the accumulation of clinical and molecular information in recent years has generated considerable confusion regarding the diagnosis of RTT. The purpose of this work was revise and clarify 2002 consensus criteria for the diagnosis of RTT in anticipation of treatment trials. Method RettSearch members, representing the majority of the international clinical RTT specialists, participated in an iterative process to come to a consensus on a revised and simplified clinical diagnostic criteria for RTT. Results The clinical criteria required for the diagnosis of classic and atypical RTT were clarified and simplified. Guidelines for the diagnosis and molecular evaluation of specific variant forms of RTT were developed. Interpretation These revised criteria provide clarity regarding the key features required for the diagnosis of RTT and reinforce the concept that RTT is a clinical diagnosis based on distinct clinical criteria, independent of molecular findings. We recommend that these criteria and guidelines be utilized in any proposed clinical research.
We investigated the etiology of Leigh syndrome in 67 Australian cases from 56 pedigrees, 35 with a firm diagnosis and 32 with some atypical features. Biochemical or DNA defects were determined in both groups, ie, 80% in the tightly defined group and 41% in the "Leigh-like" group. Eleven patients had mitochondrial DNA point mutations (nucleotide [nt] 8993 T to G, nt 8993 T to C, or nt 8344 A to G) and 1 Leigh-like patient had a heteroplasmic deletion. Twenty-nine patients had enzyme defects, ie, 13 respiratory chain complex I, 9 complex IV, and 7 pyruvate dehydrogenase complex (PDHC). Complex I deficiency is more common than recognized previously. Six PDHC-deficient patients had mutations in the X-chromosomal gene encoding the E1alpha subunit of PDHC. Parental consanguinity suggested autosomal recessive inheritance in two complex IV-deficient sibships. We found no strong correlation between the clinical features and basic defects. An assumption of autosomal recessive inheritance (frequently made in the past) would have been wrong in nearly one-half (11 of 28 tightly defined and 18 of 41 total patients) of those in whom a cause was found. A specific defect must be identified if reliable genetic counseling is to be provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.