To overview the gene content of the important pathogen Phytophthora infestans, large-scale cDNA and genomic sequencing was performed. A set of 75,757 high-quality expressed sequence tags (ESTs) from P. infestans was obtained from 20 cDNA libraries representing a broad range of growth conditions, stress responses, and developmental stages. These included libraries from P. infestans-potato and -tomato interactions, from which 963 pathogen ESTs were identified. To complement the ESTs, onefold coverage of the P. infestans genome was obtained and regions of coding potential identified. A unigene set of 18,256 sequences was derived from the EST and genomic data and characterized for potential functions, stage-specific patterns of expression, and codon bias. Cluster analysis of ESTs revealed major differences between the expressed gene content of mycelial and spore-related stages, and affinities between some growth conditions. Comparisons with databases of fungal pathogenicity genes revealed conserved elements of pathogenicity, such as class III pectate lyases, despite the considerable evolutionary distance between oomycetes and fungi. Thirty-seven genes encoding components of flagella also were identified. Several genes not anticipated to occur in oomycetes were detected, including chitin synthases, phosphagen kinases, and a bacterial-type FtsZ cell-division protein. The sequence data described are available in a searchable public database.
Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.
Abstract:The recent introduction of the chloronicotinyl insecticide imidacloprid, targeting insect nicotinic acetylcholine receptors (nAChRs), emphasises the importance of a detailed molecular characterisation of these receptors. We are investigating the molecular diversity of insect nAChR subunit genes in an important agricultural pest, the peach-potato aphid Myzus persicae. Two M. persicae ␣-subunit cDNAs, Mp␣1 and Mp␣2, have been cloned previously. Here we report the isolation of three novel ␣-subunit genes (Mp␣3-5) with overall amino acid sequence identities between 43 and 76% to characterised insect nAChR subunits. Alignment of their amino acid sequences with other invertebrate and vertebrate nAChR subunits suggests that the insect ␣ subunits evolved in parallel to the vertebrate neuronal nAChRs and that the insect non-␣ subunits are clearly different from vertebrate neuronal  and muscle non-␣ subunits. The discovery of novel subtypes in M. persicae is a further indicator of the complexity of the insect nAChR gene family. Heterologous co-expression of M. persicae nAChR ␣-subunit cDNAs with the rat 2 in Drosophila S2 cells resulted in high-affinity binding of nicotinic radioligands. The affinity of recombinant nAChRs for [ 3 H]imidacloprid was influenced strongly by the ␣ subtype. This is the first demonstration that imidacloprid selectively acts on Mp␣2 and Mp␣3 subunits, but not Mp␣1, in M. persicae.
Saccharomyces cerevisiae has been used as a model system to characterize the effect of cytochrome b mutations found in fungal and oomycete plant pathogens resistant to Q o inhibitors (QoIs), including the strobilurins, now widely employed in agriculture to control such diseases. Specific residues in the Q o site of yeast cytochrome b were modified to obtain four new forms mimicking the Q o binding site of Erysiphe graminis, Venturia inaequalis, Sphaerotheca fuliginea and Phytophthora megasperma. These modified versions of cytochrome b were then used to study the impact of the introduction of the G143A mutation on bc 1 complex activity. In addition, the effects of two other mutations F129L and L275F, which also confer levels of QoI insensitivity, were also studied. The G143A mutation caused a high level of resistance to QoI compounds such as myxothiazol, axoxystrobin and pyraclostrobin, but not to stigmatellin. The pattern of resistance conferred by F129L and L275F was different. Interestingly G143A had a slightly deleterious effect on the bc 1 function in V. inaequalis, S. fuliginea and P. megasperma Q o site mimics but not in that for E. graminis. Thus small variations in the Q o site seem to affect the impact of the G143A mutation on bc 1 activity. Based on this observation in the yeast model, it might be anticipated that the G143A mutation might affect the fitness of pathogens differentially. If so, this could contribute to observed differences in the rates of evolution of QoI resistance in fungal and oomycete pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.