We used the eddy—correlation technique to investigate the exchange of CO2 between an undisturbed old—growth forest and the atmosphere at a remote Southern Hemisphere site on 15 d between 1989 and 1990. Our goal was to determine how environmental factors regulate ecosystem CO2 exchange, and to test whether present knowledge of leaf—level processes was sufficient to understand ecosystem—level exchange. On clear summer days the maximum rate of net ecosystem CO2 uptake exceeded 15 μmol°m—2°s—1, about an order of magnitude greater than the maximum values observed on sunny days in the winter. Mean nighttime respiration rates varied between °—2 and —7 μmol°m—2°s—1. Nighttime CO2 efflux rate roughly doubled with a 10°C increase in temperature. Daytime variation in net ecosystem CO2 exchange rate was primarily associated with changes in total photosynthetically active photon flux density (PPFD). Air temperature, saturation deficit, and the diffuse PPFD were of lesser, but still significant, influence. These results are in broad agreement with expectations based on the biochemistry of leaf gas exchange and penetration of radiation through a canopy. However, at night, the short—term exchange of CO2 between the forest and the atmosphere appeared to be regulated principally by atmospheric transport processes. There was a positive linear relationship between nocturnal CO2 exchange rate and downward sensible heat flux density. This new result has implications for the development of models for diurnal ecosystem CO2 exchange. The daytime light—use efficiency of the ecosystem (CO2 uptake/incident PPFD) was between 1.6 and 7.1 mmol/mol on clear days in the summer but decreased to 0.8 mmol/mol after frosts on clear winter days. Ecosystem CO2 uptake was enhanced by diffuse PPFD, a result of potentially global significance given recent increases in Northern Hemisphere haze.
Improved global estimates of terrestrial photosynthesis and respiration are critical for predicting the rate of change in atmospheric CO 2. The oxygen isotopic composition of atmospheric CO2 can be used to estimate these fluxes because oxygen isotopic exchange between CO 2 and water creates distinct isotopic flux signatures. The enzyme carbonic anhydrase (CA) is known to accelerate this exchange in leaves, but the possibility of CA activity in soils is commonly neglected. Here, we report widespread accelerated soil CO 2 hydration. Exchange was 10 -300 times faster than the uncatalyzed rate, consistent with typical population sizes for CAcontaining soil microorganisms. Including accelerated soil hydration in global model simulations modifies contributions from soil and foliage to the global CO 18 O budget and eliminates persistent discrepancies existing between model and atmospheric observations. This enhanced soil hydration also increases the differences between the isotopic signatures of photosynthesis and respiration, particularly in the tropics, increasing the precision of CO2 gross fluxes obtained by using the ␦ 18 O of atmospheric CO2 by 50%.carbon cycle ͉ water cycle ͉ carbonic anhydrase ͉ oxygen isotopes ͉ terrestrial biosphere
Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day tree). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s that is equivalent to 112 mmol m s at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m s at the top and 150 mmol m s at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was -27.76±0.27‰ (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.