To investigate whether the derangements in calcium kinetics in patients with renal osteodystrophy are similar in the various histologic forms of this metabolic bone disease, 43 patients on chronic maintenance dialysis underwent calcium kinetic studies using the double isotope technique, iliac crest bone biopsies for mineralized bone histology and histomorphometry and determinations of serum indices of calcium and bone metabolism. Intestinal calcium absorption was not different among the three histologic groups. However, women exhibited lower calcium absorption in each histologic form (P < 0.01). Patients with predominant hyperparathyroid bone disease showed plasma calcium efflux, calcium accretion rate and calcium retention markedly above normal values. Patients with low turnover bone disease exhibited a normal or slightly decreased plasma calcium efflux and calcium accretion rate together with a disproportionately low calcium retention. Patients with mixed uremic osteodystrophy presented with a calcium kinetic profile intermediary to the two other forms. Good relationships existed between plasma calcium efflux, calcium accretion rate, calcium retention and histomorphometric parameters of bone turnover as well as serum levels of parathyroid hormone. However, no serum parameter could indicate with certainty the underlying bone disease. These findings demonstrate that adynamic bone disease does not merely represent an academic finding but is characterized by a very low bone capacity to buffer calcium and inability to handle an extra calcium load. This is particularly relevant for the daily care of end-stage renal failure patients presently receiving higher than ever amounts of vitamin D and calcium salts.
The localization of TGF-beta(1) mRNA and protein within tubular epithelial cells, along with its increased urinary excretion in patients with nephrotic syndrome, suggest the activation of these cells by filtered protein towards increased TGF-beta(1) production.
The aim of this study was to assess the clinical and laboratory correlations of bone mineral density (BMD) measurements among a large population of patients on chronic peritoneal dialysis (PD). This cross-sectional, multicenter study was carried out in 292 PD patients with a mean age of 56 +/- 16 years and mean duration of PD 3.1 +/- 2.1 years. Altogether, 129 female and 163 male patients from 24 centers in Canada, Greece, and Turkey were included in the study. BMD findings, obtained by dual-energy X-ray absorptiometry (DEXA) and some other major clinical and laboratory indices of bone mineral deposition as well as uremic osteodystrophy were investigated. In the 292 patients included in the study, the mean lumbar spine T-score was -1.04 +/- 1.68, the lumbar spine Z-score was -0.31 +/- 1.68, the femoral neck T-score was -1.38 +/- 1.39, and the femoral neck Z score was -0.66 +/- 1.23. According to the WHO criteria based on lumbar spine T-scores, 19.2% of 292 patients were osteoporotic, 36.3% had osteopenia, and 44.4% had lumbar spine T-scores within the normal range. In the femoral neck area, the prevalence of osteoporosis was slightly higher (26%). The prevalence of osteoporosis was 23.3% in female patients and 16.6% in male patients with no statistically significant difference between the sexes. Agreements of lumbar spine and femoral neck T-scores for the diagnosis of osteoporosis were 66.7% and 27.3% and 83.3% for osteopenia and normal BMD values, respectively. Among the clinical and laboratory parameters we investigated in this study, the body mass index (BMI) (P < 0.001), daily urine output, and urea clearance time x dialysis time/volume (Kt/V) (P < 0.05) were statistically significantly positive and Ca x PO(4) had a negative correlation (P < 0.05) with the lumbar spine T scores. Femoral neck T scores were also positively correlated with BMI, daily urine output, and KT/V; and they were negatively correlated with age. Intact parathyroid hormone levels did not correlate with any of the BMD parameters. Femoral neck Z scores were correlated with BMI (P < 0.001), and ionized calcium (P < 0.05) positively and negatively with age, total alkaline phosphatase (P < 0.05), and Ca x P (P < 0.01). The overall prevalence of fractures since the initiation of PD was 10%. Our results indicated that, considering their DEXA-based BMD values, 55% of chronic PD patients have subnormal bone mass-19% within the osteoporotic range and 36% within the osteopenic range. Our findings also indicate that low body weight is the most important risk factor for osteoporosis in chronic PD patients. An insufficient dialysis dose (expressed as KT/V) and older age may also be important risk factors for osteoporosis of PD patients.
Background/Aims: The cellular and humoral factors involved in the development and progression of renal scarring have not been fully investigated. Transforming growth factor-β (TGF-β1) is considered to be the main fibrogenic growth factor and it is implicated in the pathogenesis of renal fibrosis in experimental and clinical nephropathies. On the other hand, collagen III is an important component of the extracellular matrix. In this study we attempted to identify any possible links between TGF-β1 and collagen III synthesis and expression with the expression of myofibroblasts in the evolution of renal scarring in human glomerular diseases. Methods: We studied retrospectively 40 patients with various types of primary and secondary glomerulonephritis (GN), with either proliferative or nonproliferative pattern, with emphasis on the renal synthesis of TGF-β1 and collagen III (detected by in situ hybridization) and their expression (detected by immunohistochemistry) as well as myofibroblast expression. The possible links of TGF-β1 expression with myofibroblast distribution (α-smooth muscle actin, α-SMA(+) cells) and with conventional histopathology and renal function was also examined. Results: TGF-β1 protein and mRNA were detected in the renal tubular epithelial cells and interstitium and to a lesser extent within glomeruli of patients with GN. Collagen III was mainly detected in the interstitium (peritubular and periglomerular areas) and to a lesser extent in the glomeruli. Messenger RNA for collagen III followed a similar peritubular and periglomerular distribution to that of TGF-β1 and α-SMA(+) interstitial cells. The intensity of interstitial TGF-β1 protein expression was significantly related to the degree of interstitial fibrosis (r = 0.628, p < 0.01), tubular atrophy (r = 0.612, p < 0.01), interstitial collagen III expression (r = 0.478, p < 0.05), and serum creatinine values (r = 0.722, p < 0.001). Also there was a close positive correlation between the severity of interstitial myofibroblast expression and interstitial TGF-β1 (r = 0.412, p < 0.05), as well as collagen III (r = 0.409, p < 0.05). In addition, a significant correlation was found between glomerular TGF-β1 expression and severity of glomerulosclerosis (r = 0.620, p < 0.01). Conclusion: The results of this study suggest that TGF-β1 plays an important role in the pathogenesis of fibrosis developing in human kidney, during the evolution of glomerular disease. Interstitial myofibroblasts may contribute to interstitial fibrosis through the synthesis and release of both TGF-β1 and collagen III.
Chronic kidney disease is linked to systemic inflammation and to an increased risk of ischemic heart disease and atherosclerosis. Endothelial dysfunction associates with hypertension and vascular disease in the presence of chronic kidney disease but the mechanisms that regulate the activation of the endothelium at the early stages of the disease, before systemic inflammation is established remain obscure. In the present study we investigated the effect of serum derived from patients with chronic kidney disease either before or after hemodialysis on the activation of human endothelial cells in vitro, as an attempt to define the overall effect of uremic toxins at the early stages of endothelial dysfunction. Our results argue that uremic toxins alter the biological actions of endothelial cells and the remodelling of the extracellular matrix before signs of systemic inflammatory responses are observed. This study further elucidates the early events of endothelial dysfunction during toxic uremia conditions allowing more complete understanding of the molecular events as well as their sequence during progressive renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.