We present a new time-slice reconstruction of the Eurasian ice sheets (British-Irish, Svalbard-Barents-Kara Seas and Scandinavian) documenting the spatial evolution of these interconnected ice sheets every 1000 years from 25 to 10 ka, and at four selected time periods back to 40 ka. The time-slice maps of ice-sheet extent are based on a new Geographical Information System (GIS) database, where we have collected published numerical dates constraining the timing of ice-sheet advance and retreat, and additionally geomorphological and geological evidence contained within the existing literature. We integrate all uncertainty estimates into three ice-margin lines for each time-slice; a most-credible line, derived from our assessment of all available evidence, with bounding maximum and minimum limits allowed by existing data. This approach was motivated by the demands of glaciological, isostatic and climate modelling and to clearly display limitations in knowledge. The timing of advance and retreat were both remarkably spatially variable across the ice-sheet area. According to our compilation the westernmost limit along the British-Irish and Norwegian continental shelf was reached up to 7000 years earlier (at c. 27-26 ka) than the eastern limit on the Russian Plain (at c. 20-19 ka). The Eurasian ice sheet complex as a whole attained its maximum extent (5.5 Mkm 2 ) and volume (~24 m Sea Level Equivalent) at c. 21 ka. Our continentalscale approach highlights instances of conflicting evidence and gaps in the ice-sheet chronology where uncertainties remain large and should be a focus for future research. Largest uncertainties coincide with locations presently below sea level and where contradicting evidence exists. This first version of the database and time-slices (DATED-1) has a census date of 1 January 2013 and both are available to download via the Bjerknes Climate Data Centre and PANGAEA (www.bcdc.no;
The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ18O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed independently of far-field sea level and δ18O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ18O and sea level may be more complex than assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.