A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
While it is well known that Staphylococcus aureus establishes chronic implant-associated osteomyelitis by generating and persisting in biofilm, research to elucidate pathogen and host specific factors controlling this process has been limited due to the absence of a quantitative in vivo model. To address this, we developed a murine tibia implant model with ex vivo region of interest (ROI) imaging analysis by scanning electron microscopy (SEM). Implants were coated with Staphylococcus aureus strains (SH1000, UAMS-1, USA300LAC) with distinct in vitro biofilm phenotypes, were used to infect C57BL/6 or Balb/c mice. In contrast to their in vitro biofilm phenotype, results from all bacteria strains in vivo were similar, and demonstrated that biofilm on the implant is established within the first day, followed by a robust proliferation phase peaking on Day 3 in Balb/c mice, and persisting until Day 7 in C57BL/6 mice, as detected by SEM and bioluminescent imaging. Biofilm formation peaked at Day 14, covering ~40% of the ROI coincident with massive agr-dependent bacterial emigration, as evidenced by large numbers of empty lacunae with few residual bacteria, which were largely culture negative (80%) and PCR positive (87.5%), supporting the clinical relevance of this implant model.
While Staphylococcus aureus osteomyelitis is considered to be incurable, the major bacterial reservoir in live cortical bone has remained unknown. In addition to biofilm bacteria on necrotic tissue and implants, studies have implicated intracellular infection of osteoblasts and osteocytes as a mechanism of chronic osteomyelitis. Thus, we performed the first systematic transmission electron microscopy (TEM) studies to formally define major reservoirs of S. aureus in chronically infected mouse (Balb/c J) long bone tissue. Although rare, evidence of colonized osteoblasts was found. In contrast, we readily observed S. aureus within canaliculi of live cortical bone, which existed as chains of individual cocci and submicron rod-shaped bacteria leading to biofilm formation in osteocyte lacunae. As these observations do not conform to the expectations of S. aureus as non-motile cocci 1.0–1.5 µm in diameter, we also performed immunoelectron microscopy (IEM) following in vivo BrdU labeling to assess the role of bacterial proliferation in canalicular invasion. The results suggest that the deformed bacteria: 1) enter canaliculi via asymmetric binary fission; and 2) migrate toward osteocyte lacunae via proliferation at the leading edge. Additional in vitro studies confirmed S. aureus migration through a 0.5 µm porous membrane. Collectively, these findings define a novel mechanism of bone infection, and provide possible new insight as to why S. aureus implant related infections of bone tissue are so challenging to treat.
Towards development of a methicillin-resistant S. aureus (MRSA) vaccine we evaluated a neutralizing anti-glucosaminidase (Gmd) monoclonal antibody (1C11) in a murine model of implant-associated osteomyelitis, and compared its effects on LAC USA300 MRSA versus placebo (alpha-T2m) and a Gmd-deficient isogenic strain (delta-Gmd). 1C11 significantly reduced infection severity, as determined by bioluminescent imaging of bacteria, micro-CT assessment of osteolysis and histomorphometry of abscess numbers (p<0.05). Histology also revealed infiltrating macrophages, and the complete lack of staphylococcal abscess communities (SAC), in marrow abscesses of 1C11 treated mice. In vitro, 1C11 had no direct effects on proliferation, but electron microscopy demonstrated that 1C11 treatment phenocopies delta-Gmd defects in binary fission. Moreover, addition of 1C11 to MRSA cultures induced the formation of large bacterial aggregates (megaclusters) that sedimented out of solution, which was not observed in delta-Gmd cultures or 1C11 treated cultures of a protein A-deficient strain (delta-Spa), suggesting that the combined effects of Gmd inhibition and antibody-mediated agglutination are required. Finally, we demonstrated that macrophage opsonophagocytosis of MRSA and megaclusters is significantly increased by 1C11 (p<0.01). Collectively, these results suggest that the primary mechanism of anti-Gmd humoral immunity against MRSA osteomyelitis is macrophage invasion of SAC and opsonophagocytosis of megaclusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.