Foot infections are a common and serious problem in persons with diabetes. Diabetic foot infections (DFIs) typically begin in a wound, most often a neuropathic ulceration. While all wounds are colonized with microorganisms, the presence of infection is defined by ≥2 classic findings of inflammation or purulence. Infections are then classified into mild (superficial and limited in size and depth), moderate (deeper or more extensive), or severe (accompanied by systemic signs or metabolic perturbations). This classification system, along with a vascular assessment, helps determine which patients should be hospitalized, which may require special imaging procedures or surgical interventions, and which will require amputation. Most DFIs are polymicrobial, with aerobic gram-positive cocci (GPC), and especially staphylococci, the most common causative organisms. Aerobic gram-negative bacilli are frequently copathogens in infections that are chronic or follow antibiotic treatment, and obligate anaerobes may be copathogens in ischemic or necrotic wounds. Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. For infected wounds, obtain a post-debridement specimen (preferably of tissue) for aerobic and anaerobic culture. Empiric antibiotic therapy can be narrowly targeted at GPC in many acutely infected patients, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections usually require broader spectrum regimens. Imaging is helpful in most DFIs; plain radiographs may be sufficient, but magnetic resonance imaging is far more sensitive and specific. Osteomyelitis occurs in many diabetic patients with a foot wound and can be difficult to diagnose (optimally defined by bone culture and histology) and treat (often requiring surgical debridement or resection, and/or prolonged antibiotic therapy). Most DFIs require some surgical intervention, ranging from minor (debridement) to major (resection, amputation). Wounds must also be properly dressed and off-loaded of pressure, and patients need regular follow-up. An ischemic foot may require revascularization, and some nonresponding patients may benefit from selected adjunctive measures. Employing multidisciplinary foot teams improves outcomes. Clinicians and healthcare organizations should attempt to monitor, and thereby improve, their outcomes and processes in caring for DFIs.
The International Working Group on the Diabetic Foot (IWGDF) has published evidence‐based guidelines on the prevention and management of diabetic foot disease since 1999. This guideline is on the diagnosis and treatment of foot infection in persons with diabetes and updates the 2015 IWGDF infection guideline. On the basis of patient, intervention, comparison, outcomes (PICOs) developed by the infection committee, in conjunction with internal and external reviewers and consultants, and on systematic reviews the committee conducted on the diagnosis of infection (new) and treatment of infection (updated from 2015), we offer 27 recommendations. These cover various aspects of diagnosing soft tissue and bone infection, including the classification scheme for diagnosing infection and its severity. Of note, we have updated this scheme for the first time since we developed it 15 years ago. We also review the microbiology of diabetic foot infections, including how to collect samples and to process them to identify causative pathogens. Finally, we discuss the approach to treating diabetic foot infections, including selecting appropriate empiric and definitive antimicrobial therapy for soft tissue and for bone infections, when and how to approach surgical treatment, and which adjunctive treatments we think are or are not useful for the infectious aspects of diabetic foot problems. For this version of the guideline, we also updated four tables and one figure from the 2016 guideline. We think that following the principles of diagnosing and treating diabetic foot infections outlined in this guideline can help clinicians to provide better care for these patients.
These guidelines were developed and issued on behalf of the Infectious Diseases Society of America. a B.A.L. served as the chairman and A.R.B. served as the vice chairman of the Infectious Diseases Society of America Guidelines Committee on Diabetic Foot Infections.b Deceased.
Recommendations Classification/diagnosis Diabetic foot infection must be diagnosed clinically, based on the presence of local or systemic signs or symptoms of inflammation (strong; low). Assess the severity of any diabetic foot infection using the Infectious Diseases Society of America/International Working Group on the Diabetic Foot classification scheme (strong; moderate). Osteomyelitis For an infected open wound, perform a probe‐to‐bone test; in a patient at low risk for osteomyelitis, a negative test largely rules out the diagnosis, while in a high‐risk patient, a positive test is largely diagnostic (strong; high). Markedly elevated serum inflammatory markers, especially erythrocyte sedimentation rate, are suggestive of osteomyelitis in suspected cases (weak; moderate). A definite diagnosis of bone infection usually requires positive results on microbiological (and, optimally, histological) examinations of an aseptically obtained bone sample, but this is usually required only when the diagnosis is in doubt or determining the causative pathogen's antibiotic susceptibility is crucial (strong; moderate). A probable diagnosis of bone infection is reasonable if there are positive results on a combination of diagnostic tests, such as probe‐to‐bone, serum inflammatory markers, plain X‐ray, magnetic resonance imaging (MRI) or radionuclide scanning (strong; weak). Avoid using results of soft tissue or sinus tract specimens for selecting antibiotic therapy for osteomyelitis as they do not accurately reflect bone culture results (strong; moderate). Obtain plain X‐rays of the foot in all cases of non‐superficial diabetic foot infection (strong; low). Use MRI when an advanced imaging test is needed for diagnosing diabetic foot osteomyelitis (strong; moderate). When MRI is not available or contraindicated, consider a white blood cell‐labelled radionuclide scan, or possibly single‐photon emission computed tomography (CT) and CT (SPECT/CT) or fluorine‐18‐fluorodeoxyglucose positron emission tomography/CT scans (weak; moderate). Assessing severity At initial evaluation of any infected foot, obtain vital signs and appropriate blood tests, debride the wound and probe and assess the depth and extent of the infection to establish its severity (strong; moderate). At initial evaluation, assess arterial perfusion and decide whether and when further vascular assessment or revascularization is needed (strong; low). Microbiological considerations Obtain cultures, preferably of a tissue specimen rather than a swab, of infected wounds to determine the causative microorganisms and their antibiotic sensitivity (strong; high). Do not obtain repeat cultures unless the patient is not clinically responding to treatment, or occasionally for infection control surveillance of resistant pathogens (strong; low). Send collected specimens to the microbiology laboratory promptly, in sterile transport containers, accompanied by clinical information on the type of specimen and location of the wound (strong; low). Surgical treatment Consult...
SummaryThe International Working Group on the Diabetic Foot appointed an expert panel to provide evidence-based guidance on the management of osteomyelitis in the diabetic foot. Initially, the panel formulated a consensus scheme for the diagnosis of diabetic foot osteomyelitis (DFO) for research purposes, and undertook a systematic review of the evidence relating to treatment. The consensus diagnostic scheme was based on expert opinion; the systematic review was based on a search for reports of the effectiveness of treatment for DFO published prior to December 2006.The panel reached consensus on a proposed scheme that assesses the probability of DFO, based on clinical findings and the results of imaging and laboratory investigations.The literature review identified 1168 papers, 19 of which fulfilled criteria for detailed data extraction. No significant differences in outcome were associated with any particular treatment strategy. There was no evidence that surgical debridement of the infected bone is routinely necessary. Culture and sensitivity of isolates from bone biopsy may assist in selecting properly targeted antibiotic regimens, but empirical regimens should include agents active against staphylococci, administered either intravenously or orally (with a highly bioavailable agent). There are no data to support the superiority of any particular route of delivery of systemic antibiotics or to inform the optimal duration of antibiotic therapy. No available evidence supports the use of any adjunctive therapies, such as hyperbaric oxygen, granulocyte-colony stimulating factor or larvae.We have proposed a scheme for diagnosing DFO for research purposes. Data to inform treatment choices in DFO are limited, and further research is urgently needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.