Circulating tumor cells (CTCs) are shed into the bloodstream by invasive cancers, but the difficulty inherent in identifying these rare cells by microscopy has precluded their routine use in monitoring or screening for cancer. We recently described a high-throughput microfluidic CTC-iChip, which efficiently depletes hematopoietic cells from blood specimens and enriches for CTCs with well-preserved RNA. Application of RNA-based digital PCR to detect CTC-derived signatures may thus enable highly accurate tissue lineage-based cancer detection in blood specimens. As proof of principle, we examined hepatocellular carcinoma (HCC), a cancer that is derived from liver cells bearing a unique gene expression profile. After identifying a digital signature of 10 liver-specific transcripts, we used a cross-validated logistic regression model to identify the presence of HCC-derived CTCs in nine of 16 (56%) untreated patients with HCC versus one of 31 (3%) patients with nonmalignant liver disease at risk for developing HCC (P < 0.0001). Positive CTC scores declined in treated patients: Nine of 32 (28%) patients receiving therapy and only one of 15 (7%) patients who had undergone curative-intent ablation, surgery, or liver transplantation were positive. RNA-based digital CTC scoring was not correlated with the standard HCC serum protein marker alpha fetoprotein (P = 0.57). Modeling the sequential use of these two orthogonal markers for liver cancer screening in patients with high-risk cirrhosis generates positive and negative predictive values of 80% and 86%, respectively. Thus, digital RNA quantitation constitutes a sensitive and specific CTC readout, enabling high-throughput clinical applications, such as noninvasive screening for HCC in populations where viral hepatitis and cirrhosis are prevalent.circulating tumor cells | early cancer detection | hepatocellular carcinoma | blood biopsy | predictive modeling T he shedding by epithelial cancers of circulating tumor cells (CTCs) into the bloodstream underlies the blood-borne dissemination of cancer, although only a small fraction of CTCs gives rise to metastases (1). Enumeration and analysis of CTCs may thus enable noninvasive monitoring of advanced cancers, as well as early detection of invasive but localized tumors before they give rise to viable metastases. Recent advances in CTC isolation provide sensitive and high-throughput platforms to enrich for these rare tumor cells within blood specimens, but antibody staining and microscopic imaging of captured cancer cells remain a critical bottleneck limiting broad application of the technology (2). Classical CTC staining criteria include the presence of cell surface epithelial cell adhesion molecule (EpCAM) and cytoplasmic epithelial cytokeratins and the absence of the hematopoietic CD45 marker (3), but epithelial marker expression is highly variable and extensive imaging criteria must be applied to score immunofluorescent signals reliably from rare cancer cells surrounded by contaminating leukocytes (4). Emerging microfluidic C...
Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of β-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that β-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis.
SignificanceIdentifying predictive biomarkers of therapeutic response for melanoma patients treated with immune checkpoint inhibitors is a major challenge. By combining microfluidic enrichment for melanoma circulating tumor cells (CTCs) together with RNA-based droplet digital PCR quantitation, we have established a highly sensitive and robust platform for noninvasive, blood-based monitoring of tumor burden. Serial monitoring of melanoma patients treated with immune checkpoint inhibitors shows rapid changes in CTC score, which precede standard clinical assessment and are highly predictive of long-term clinical outcome. Early on-treatment digital monitoring of CTC dynamics may thus help identify patients likely to benefit from immune checkpoint inhibition therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.