Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection.
A variety of physical mechanisms are jointly responsible for facilitating air‐sea gas transfer through turbulent processes at the atmosphere‐ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s−1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2∼U10N1.68 and k660 dms∼U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean‐Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state‐dependent calculation of bubble‐mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.
The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
The contemporary air‐sea flux of CO2 is investigated by the use of an air‐sea flux equation, with particular attention to the uncertainties in global values and their origin with respect to that equation. In particular, uncertainties deriving from the transfer velocity and from sparse upper ocean sampling are investigated. Eight formulations of air‐sea gas transfer velocity are used to evaluate the combined standard uncertainty resulting from several sources of error. Depending on expert opinion, a standard uncertainty in transfer velocity of either ~5% or ~10% can be argued and that will contribute a proportional error in air‐sea flux. The limited sampling of upper ocean fCO2 is readily apparent in the Surface Ocean CO2 Atlas databases. The effect of sparse sampling on the calculated fluxes was investigated by a bootstrap method, that is, treating each ship cruise to an oceanic region as a random episode and creating 10 synthetic data sets by randomly selecting episodes with replacement. Convincing values of global net air‐sea flux can only be achieved using upper ocean data collected over several decades but referenced to a standard year. The global annual referenced values are robust to sparse sampling, but seasonal and regional values exhibit more sampling uncertainty. Additional uncertainties are related to thermal and haline effects and to aspects of air‐sea gas exchange not captured by standard models. An estimate of global net CO2 exchange referenced to 2010 of −3.0 ± 0.6 Pg C/year is proposed, where the uncertainty derives primarily from uncertainty in the transfer velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.