A new approach for defect classification and quantification by using pulsed eddy current sensors and integration of principal component analysis and wavelet transform for feature based signal interpretation is presented. After reviewing the limitation of current parameters of peak value and its arrival time from pulsed eddy current signals, a two-step framework for defect classification and quantification is proposed by using adopted features from principal component analysis and wavelet analysis. For defect classification and quantification, different features have been extracted from the pulsed eddy current signals. Experimental tests have been undertaken for ferrous and non-ferrous metal samples with manufactured defects. The results have illustrated the new approach has better performance than the current approaches for surface and sub-surface defect classification. The defect quantification performance, which is difficult by using current approaches, is impressive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.