The NCEP and NCAR are cooperating in a project (denoted "reanalysis") to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957-96. This eliminates perceived climate jumps associated with changes in the data assimilation system.The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by different countries and organizations. The system has been designed with advanced quality control and monitoring components, and can produce 1 mon of reanalysis per day on a Cray YMP/8 supercomputer. Different types of output archives are being created to satisfy different user needs, including a "quick look" CD-ROM (one per year) with six tropospheric and stratospheric fields available twice daily, as well as surface, top-of-the-atmosphere, and isentropic fields. Reanalysis information and selected output is also available on-line via the Internet (http//:nic.fb4.noaa.gov:8000). A special CD-ROM, containing 13 years of selected observed, daily, monthly, and climatological data from the NCEP/NCAR Reanalysis, is included with this issue. Output variables are classified into four classes, depending on the degree to which they are influenced by the observations and/or the model. For example, "C" variables (such as precipitation and surface fluxes) are completely determined by the model during the data assimilation and should be used with caution. Nevertheless, a comparison of these variables with observations and with several climatologies shows that they generally contain considerable useful information. Eight-day forecasts, produced every 5 days, should be useful for predictability studies and for monitoring the quality of the observing systems.The 40 years of reanalysis should be completed in early 1997. A continuation into the future through an identical Climate Data Assimilation System will allow researchers to reliably compare recent anomalies with those in earlier decades. Since changes in the observing systems will inevitably produce perceived changes in the climate, parallel reanalyses (at least 1 year long) will be generated for the periods immediately after the introduction of new observing systems, such as new types of satellite data.NCEP plans currently call for an updated reanalysis using a state-of-the-art system every five years or so. The successive reanalyses will be greatly facilitated by the generation ...
A new coupled global NCEP Reanalysis for the period 1979-present is now available, at much higher temporal and spatial resolution, for climate studies. T he first reanalysis at NCEP (all acronyms are defined in the appendix), conducted in the 1990s, resulted in the NCEP-NCAR reanalysis (Kalnay et al. 1996), or R1 for brevity, and ultimately covered many years, from 1948 to the present (Kistler et al. 2001). It is still being executed at NCEP, to the benefit of countless users for monthly, and even daily, updates of the current state of the atmosphere. At the same time, other reanalyses were being conducted, namely, ERA-15 (Gibson et al. 1997) was executed for a more limited period (1979-93) at the ECMWF, COLA conducted a short reanalysis covering the May 1982-November 1983 period (Paolino et al. 1995), and NASA GSFC conducted a reanalysis covering the 1980-94 period (Schubert et al. 1997). The general purpose of conducting reanalyses is to produce multiyear global state-of-the-art gridded representations of atmospheric states, generated by a constant model and a constant data assimilation system. To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand analyses prior to about 1965. The hope was that a reanalysis,
This article is accompanied by a CD-ROM that contains the complete documentation of the NCEP-NCAR Reanalysis and all of the data analyses and forecasts. It is provided to members through the sponsorship of SAIC and GSC. 1 • Introduction The National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) have cooperated in a project (denoted "reanalysis") to produce a retroactive record of more than 50 years of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involved the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data. These data were then quality controlled and assimilated with a data assimilation system kept unchanged over the reanalysis period. This eliminated perceived climate jumps associated with changes in the operational (real time)
T he NASA Atmospheric InfraRed Sounder (AIRS), the first of the new generation of meteorological advanced sounders for operational and research use, is part of a large international investment to upgrade the operational meteorological satellite systems. The new systems include the NOAA Crosstrack Infrared Sounder (CrIS) and the Hyperspectral Environmental Suite (HES) instruments, on U.S. operational polar-orbiting and geostationary platforms, respectively, and the Infrared Atmospheric Sounding TABLE I. The characteristics of the AIRS and current operational HIRS sounding instruments. Instrument HIRS AIRS Spectral range 3.7-15 pm 3.7-15 JL/M Spatial resolution 17.4-km subsatellite 13.5-km subsatellite Number of channels 20 2378 A XIX-1/70-1/1200 Vertical resolution-3 km-1 km Temperature accuracy ~ 1.5-2 K 1 K accuracy in I-km layers Moisture accuracy-30%
The Arctic is a vital component of the global climate, and its rapid environmental evolution is an important element of climate change around the world. To detect and diagnose the changes occurring to the coupled Arctic climate system, a state-of-the-art synthesis for assessment and monitoring is imperative. This paper presents the Arctic System Reanalysis, version 2 (ASRv2), a multiagency, university-led retrospective analysis (reanalysis) of the greater Arctic region using blends of the polar-optimized version of the Weather Research and Forecasting (Polar WRF) Model and WRF three-dimensional variational data assimilated observations for a comprehensive integration of the regional climate of the Arctic for 2000–12. New features in ASRv2 compared to version 1 (ASRv1) include 1) higher-resolution depiction in space (15-km horizontal resolution), 2) updated model physics including subgrid-scale cloud fraction interaction with radiation, and 3) a dual outer-loop routine for more accurate data assimilation. ASRv2 surface and pressure-level products are available at 3-hourly and monthly mean time scales at the National Center for Atmospheric Research (NCAR). Analysis of ASRv2 reveals superior reproduction of near-surface and tropospheric variables. Broadscale analysis of forecast precipitation and site-specific comparisons of downward radiative fluxes demonstrate significant improvement over ASRv1. The high-resolution topography and land surface, including weekly updated vegetation and realistic sea ice fraction, sea ice thickness, and snow-cover depth on sea ice, resolve finescale processes such as topographically forced winds. Thus, ASRv2 permits a reconstruction of the rapid change in the Arctic since the beginning of the twenty-first century–complementing global reanalyses. ASRv2 products will be useful for environmental models, verification of regional processes, or siting of future observation networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.