Abstract. We describe a new Global Ocean standard configuration (GO5.0) at eddy-permitting resolution, developed jointly between the National Oceanography Centre and the Met Office as part of the Joint Ocean Modelling Programme (JOMP), a working group of the UK's National Centre for Ocean Forecasting (NCOF) and part of the Joint Weather and Climate Research Programme (JWCRP). The configuration has been developed with the seamless approach to modelling in mind for ocean modelling across timescales and for a range of applications, from short-range ocean forecasting through seasonal forecasting to climate predictions as well as research use. The configuration has been coupled with sea ice (GSI5.0), atmosphere (GA5.0), and land-surface (GL5.0) configurations to form a standard coupled global model (GC1). The GO5.0 model will become the basis for the ocean model component of the Forecasting Ocean Assimilation Model, which provides forced short-range forecasting services. The GC1 or future releases of it will be used in coupled short-range ocean forecasting, seasonal forecasting, decadal prediction and for climate prediction as part of the UK Earth System Model.A 30-year integration of GO5.0, run with CORE2 (Common Ocean-ice Reference Experiments) surface forcing from 1976 to 2005, is described, and the performance of the model in the final 10 years of the integration is evaluated against observations and against a comparable integration of an existing standard configuration, GO1. An additional set of 10-year sensitivity studies, carried out to attribute changes in the model performance to individual changes in the model physics, is also analysed. GO5.0 is found to have substantially reduced subsurface drift above the depth of the thermocline relative to GO1, and also shows a significant improvement in the representation of the annual cycle of surface temperature and mixed layer depth.
A new operational ocean forecast system, the Atlantic Margin Model implementation of the Forecast Ocean Assimilation Model (FOAM-AMM), has been developed for the European North West Shelf (NWS). An overview of the system is presented including shelf specific developments of the physical model, the Nucleus for European Modeling of the Ocean (NEMO), and the Sea Surface Temperature (SST) data assimilation scheme. Initial validation is presented of the tides and model SST. The SST skill of the system is significantly improved by the data assimilation scheme. Finally, an analysis of the seasonal tidal mixing fronts shows that these in general agree well with observation, but data assimilation does not significantly alter their positions. Lead Author's Biography In 2004, after completing a PhD. in computational fluid dynamics, Enda O'Dea joined the Met Office to work in ocean modelling. He now develops ocean forecast models in the Ocean Forecasting Research and Development (OFRD) group. Recently, the group has overseen the transition from a POLCOMS based forecast system to a NEMO based forecast system for the shelf seas around the U.K. Enda's principal research area is in shelf seas forecasting and interests include the dynamics of tides, seasonal stratification, shelf slope currents and regions of fresh water influence.
Abstract. It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical ocean and sea-ice state for the global ocean and the European regional seas. CMEMS serves a wide range of users (more than 15,000 users are now registered to the service) and applications. Observations are a fundamental pillar of the CMEMS value-added chain that goes from observation to information and users. Observations are used by CMEMS Thematic Assembly Centres (TACs) to derive high-level data products and by CMEMS Monitoring and Forecasting Centres (MFCs) to validate and constrain their global and regional ocean analysis and forecasting systems. This paper presents an overview of CMEMS, its evolution, and how the value of in situ and satellite observations is increased through the generation of high-level products ready to be used by downstream applications and services. The complementary nature of satellite and in situ observations is highlighted. Le Traon et al. Copernicus Marine Service: Observations Long-term perspectives for the development of CMEMS are described and implications for the evolution of the in situ and satellite observing systems are outlined. Results from Observing System Evaluations (OSEs) and Observing System Simulation Experiments (OSSEs) illustrate the high dependencies of CMEMS systems on observations. Finally future CMEMS requirements for both satellite and in situ observations are detailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.