Oncolytic viruses that are replication competent in tumor but not in normal cells represent a novel approach for treating neoplastic diseases. However, the oncolytic potency of replicating agents is determined directly by their capability of infecting target cells. Most adenoviruses used for gene therapy or virotherapy have been based on serotype 5 (Ad5). Unfortunately, expression of the primary receptor for Ad5 (the coxsackie-adenovirus receptor, or CAR) is highly variable on ovarian and other cancer cells. By performing genetic fiber pseudotyping, we created Ad5/3-Delta24, a conditionally replicating adenovirus that does not bind CAR but facilitates entry into and killing of ovarian cancer cells. We show replication of Ad5/3-Delta24 and subsequent oncolysis of ovarian adenocarcinoma lines. Replication was also analyzed with quantitative PCR on three-dimensional primary tumor cell spheroids purified from patient samples. Moreover, in a therapeutic orthotopic model of peritoneal carcinomatosis, dramatically enhanced survival was noted. Finally, Ad5/3-Delta24 achieved a significant antitumor effect as assessed by noninvasive, in vivo bioluminescence imaging. Therefore, the preclinical therapeutic efficacy of Ad5/3-Delta24 is improved over the respective CAR- and integrin-binding controls. Taken together with promising biodistribution and toxicity data, this approach could translate into successful clinical interventions for ovarian cancer patients.
Adenovirus serotype 5 (Ad5) displays unparalleled gene transfer efficacy to cells with high coxsackie-adenovirus receptor (CAR) expression. Unfortunately, cells isolated from clinical human cancers, both ovarian and other types, express highly variable and often low levels of CAR. Fortunately, native Ad5 tropism can be modified to circumvent CAR deficiency and to enhance infectivity. Ad5/3luc1 incorporates the serotype 3 fiber knob and binds to a receptor distinct from CAR, while the fiber of Ad5lucRGD is modified with an RGD-4C motif, allowing CAR-independent binding to integrins. We studied the liver tropism and blood clearance of these viruses after intravenous (i.v.) injection, and biodistribution after intraperitoneal (i.p.) injection to tumor-bearing mice. To estimate efficacy, we assessed gene transfer to purified human primary ovarian cancer cells, and in a mouse model of ovarian cancer. Ad5/3luc1 achieved improved gene transfer over Ad5lucRGD, and both infectivity-enhanced viruses were superior to the isogenic control with an unmodified Ad5 capsid. In the presence of malignant ascites, gene transfer was improved with both Ad5/3luc1 and Ad5lucRGD. Thus, retargeting to the Ad3 receptor enhances gene transfer to clinically relevant ovarian cancer substrates, while the mouse toxicity and biodistribution profile of both fiber-modified Ad vectors is comparable to Ad5.
Conditionally replicative adenovirus (CRAd) vectors are designed for specific oncolytic replication in tumor tissues with concomitant sparing of normal cells. As such, CRAds offer an unprecedented level of anticancer potential for malignancies that have been refractory to previous cancer gene therapy interventions. CRAd efficacy may, however, be compromised by inefficient dispersion of the replicating vector within the tumor tissue. To address this issue, we evaluated the utility of a fusogenic membrane glycoprotein (FMG), which induces the fusion of neighboring cellular membranes to form multinucleated syncytia. We hypothesized that the FMG-mediated syncytia would facilitate dispersion of the adenovirus (Ad) gene products and viral progeny. To test this, human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, which induce syncytia in the presence of CD4+ target cells, were expressed by an Ad (Ad5HIVenv) in permissive (CD4-positive) and nonpermissive (CD4-negative) cell lines. After validating this Ad-FMG model, the efficiency of Ad replication in the presence or absence of syncytia was evaluated. The results demonstrated that syncytium formation was compatible with Ad replication and dramatically increased the dispersion of virus gene products within the cytoplasm of the syncytia as well as viral particles in the nuclei of the syncytial mass. Moreover, progeny virions were released more efficiently from syncytia compared with nonsyncytial cells. These data demonstrate the utility of FMGs as a dispersion agent and suggest that FMGs can improve the efficacy of CRAd gene therapy.
Conditionally replicating adenoviruses (CRADs) take advantage of tumor-specific characteristics for preferential replication and subsequent oncolysis of cancer cells. The antitumor effect is determined by the capability to infect tumor cells. Here, we used RGDCRADcox-2R, which features the cyclooxygenase-2 promoter for replication control and an integrin binding RGD-4C motif for enhanced infectivity of ovarian cancer cells. RGDCRADcox-2R replicated in and killed human ovarian cancer cells effectively, while the replication in nonmalignant cells was low. Importantly, the therapeutic efficacy, as evaluated in an orthotopic model of peritoneally disseminated ovarian cancer, was significantly improved and toxicity was lower than with a wild-type virus. Thus, this CRAD could be tested for treatment of ovarian cancer in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.