We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 x 7.7 arcseconds in extent and at spectral resolving powers ranging from 1,300 to 3,700. Each channel includes an all-reflective integral field unit (IFU): an 'image slicer' that reformats the input field for presentation to a grating spectrometer. Two 1024 x 1024 focal plane arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5 to 28.5 µm spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage and resolution. The point spread function of the reconstructed images is shown to be diffraction limited and the optical transmission is shown to be consistent with the design expectations.
In this article, we describe the MIRI Imager module (MIRIM), which provides broadband imaging in the 5 -27 µm wavelength range for the James Webb Space Telescope. The imager has a 0. 11 pixel scale and a total unobstructed view of 74 × 113 . The remainder of its nominal 113 × 113 field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM. Ranges of values reflect uncertainty in the emission level from the JWST observatory.
The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a collaborative science mission between ESA and the Chinese Academy of Sciences (CAS). SMILE is a novel self-standing mission to observe the coupling of the solar wind and Earth's magnetosphere via X-Ray imaging of the solar wind -magnetosphere interaction zones, UV imaging of global auroral distributions and simultaneous in-situ solar wind, magnetosheath plasma and magnetic field measurements. The SMILE mission proposal was submitted by a consortium of European, Chinese and Canadian scientists following a joint call for mission by ESA and CAS. It was formally selected by ESA's Science Programme Committee (SPC) as an element of the ESA Science Program in November 2015, with the goal of a launch at the end of 2021.In order to achieve its scientific objectives, the SMILE payload will comprise four instruments: the Soft X-ray Imager (SXI), which will spectrally map the Earth's magnetopause, magnetosheath and magnetospheric cusps; the UltraViolet Imager (UVI), dedicated to imaging the auroral regions; the Light Ion Analyser (LIA) and the MAGnetometer (MAG), which will establish the solar wind properties simultaneously with the imaging instruments. We report on the status of the mission and payload developments and the findings of a design study carried out in parallel at the concurrent design facilities (CDF) of ESA and CAS in October/November 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.