Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.
The p47 GTPases are essential for interferon-γ-induced cell-autonomous immunity against the protozoan parasite, Toxoplasma gondii, in mice, but the mechanism of resistance is poorly understood. We show that the p47 GTPases, including IIGP1, accumulate at vacuoles containing T. gondii. The accumulation is GTP-dependent and requires live parasites. Vacuolar IIGP1 accumulations undergo a maturation-like process accompanied by vesiculation of the parasitophorous vacuole membrane. This culminates in disruption of the parasitophorous vacuole and finally of the parasite itself. Over-expression of IIGP1 leads to accelerated vacuolar disruption whereas a dominant negative form of IIGP1 interferes with interferon-γ-mediated killing of intracellular parasites. Targeted deletion of the IIGP1 gene results in partial loss of the IFN-γ-mediated T. gondii growth restriction in mouse astrocytes.
Members of the immunity-related GTPase (IRG) family are interferon-inducible resistance factors against a broad spectrum of intracellular pathogens including Toxoplasma gondii. The molecular mechanisms governing the function and regulation of the IRG resistance system are largely unknown. We find that IRG proteins function in a system of direct, nucleotide-dependent regulatory interactions between family members. After interferon induction but before infection, the three members of the GMS subfamily of IRG proteins, Irgm1, Irgm2 and Irgm3, which possess an atypical nucleotide-binding site, regulate the intracellular positioning of the conventional GKS subfamily members, Irga6 and Irgb6. Following infection, the normal accumulation of Irga6 protein at the parasitophorous vacuole membrane (PVM) is nucleotide dependent and also depends on the presence of all three GMS proteins. We present evidence that an essential role of the GMS proteins in this response is control of the nucleotide-bound state of the GKS proteins, preventing their GTP-dependent activation before infection. Accumulation of IRG proteins at the PVM has previously been shown to be associated with a block in pathogen replication: our results relate for the first time the enzymatic properties of IRG proteins to their role in pathogen resistance.
GTPases of the mouse IRG protein family, mediators of resistance against Toxoplasma gondii in the mouse, are inactivated by a polymorphic kinase of the parasite, resulting in enhanced parasite virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.