Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν(46)-0 (centered at 782 cm(-1), 12.7 μm), ν(47)-0 (centered at 474 cm(-1), 21 μm), and ν(48)-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν(46)-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν(47)-0 and ν(48)-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν(46) rotational spectroscopic constants and to provide the first sets of constants for the ν(47) and ν(48) modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.
The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.