The abundance and functional orientation of tumor-infiltrating lymphocytes in breast cancer is associated with distant metastasis-free survival, yet how this association is influenced by tumor phenotypic heterogeneity is poorly understood. Here, a bioinformatics approach defined tumor biological attributes that influence this association, and delineated tumor subtypes that may differ in their ability to sustain durable antitumor immune responses. A large database of breast tumor expression profiles and associated clinical data was compiled, from which the ability of phenotypic markers to significantly influence the prognostic performance of a classification model that incorporates immune cell-specific gene signatures was ascertained. Markers of cell proliferation and intrinsic molecular subtype reproducibly distinguished two breast cancer subtypes that we refer to as immune benefit-enabled (IBE) and immune benefit-disabled (IBD). The IBE tumors, comprised mostly of highly proliferative tumors of the basal-like, HER2-enriched, and luminal B subtypes, could be stratified by the immune classifier into significantly different prognostic groups, while IBD tumors could not, indicating the potential for productive engagement of metastasis-protective immunity in IBE tumors, but not IBD tumors. The prognostic stratification in IBE was independent of conventional variables. Gene network analysis predicted the activation of tumor necrosis factor–α/interferon-γ signaling pathways in IBE tumors and the activation of the transforming growth factor–β pathway in IBD tumors. This supports a model in which breast tumors can be distinguished on the basis of their potential for metastasis-protective immune responsiveness. Whether IBE and IBD represent clinically-relevant contexts for evaluating sensitivity to immunotherapeutic agents warrants further investigation.
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
Amplification and over expression of erbB2/neu proto-oncogene is observed in 20–30% human breast cancer and is inversely correlated with the survival of the patient. Despite this, somatic activating mutations within erbB2 in human breast cancers are rare. However, we have previously reported that a splice isoform of erbB2, containing an in-frame deletion of exon 16 (herein referred to as ErbB2ΔEx16), results in oncogenic activation of erbB2 due to constitutive dimerization of the ErbB2 receptor. Here, we demonstrate that the ErbB2ΔEx16 is a major oncogenic driver in breast cancer that constitutively signals from the cell surface. We further show that inducible expression of the ErbB2Ex16 variant in mammary gland of transgenic mice results in the rapid development of metastatic multifocal mammary tumors. Genetic and biochemical characterization of the ErbB2ΔEx16 derived mammary tumors exhibit several unique features that distinguish it from the conventional ErbB2 models expressing the erbB2 proto-oncogene in mammary epithelium. Unlike the wild-type ErbB2 derived tumors that express luminal keratins, ErbB2ΔEx16 derived tumors exhibit high degree of intra-tumoral heterogeneity co-expressing both basal and luminal keratins. Consistent with these distinct pathological features, the ErbB2ΔEx16 tumors exhibited distinct signaling and gene expression profiles that correlated with activation of number of key transcription factors implicated in breast cancer metastasis and cancer stem cell renewal.
Graphical Abstract Highlights d RTK-RAS-MAPK pathway members score strongly in genome-scale MEKi modifier screens d Depletion of SHOC2 potently sensitizes RAS-driven cells to MEK inhibition d SHOC2 loss impairs RTK-mediated adaptive reactivation of MAPK signaling induced by MEKi d A model of SHOC2 degradation suggests a combination therapeutic strategy with MEKi SUMMARY The mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level. Multiple members of receptor tyrosine kinase (RTK)-RAS-MAPK pathways scored as sensitizers to MEKi. In particular, we demonstrate that knockout, suppression, or degradation of SHOC2, a positive regulator of MAPK signaling, specifically cooperated with MEK inhibition to impair proliferation in RAS-driven cancer cells. The depletion of SHOC2 disrupted survival pathways triggered by feedback RTK signaling in response to MEK inhibition. Thus, these findings nominate SHOC2 as a potential target for combination therapy. 118 Cell Reports 29, 118-134, October 1, 2019 ª 2019 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).(A) Schematic of pooled CRISPR-Cas9 screening strategy. (B-D) Genome-scale screen results in pancreatic cancer, CFPAC-1 (B), and lung cancer lines, A549 (C) and NCI-H23 (D). Red points have FDR < 0.25 (STARS algorithm). Mean trametinib sensitivity (x axis) is calculated as the difference in the log2(fold-change) in sgRNA representation between cells treated with trametinib for 14 days and the initial pool of sgRNAs. Differential sensitivity indicates the difference log2(fold-change) in sgRNA representation between the trametinib-treated and DMSO-treated arms of the screen. Scores represent the average of all guides for a given gene. (E) Venn diagram summarizes the overlap of genes that are depleted in all three screens with an FDR < 0.25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.