The Northern Patagonian Andes have been constructed through multiple mechanisms that range from tectonic inversion of extensional structures of Early to Middle Jurassic age in the Main Andes to Oligocene in the Precordilleran region. These have acted during two distinctive orogenic stages, first in late Early Cretaceous and later in Miocene times Late Oligocene extension separates these two contractional periods and is recorded by half‐grabens developed in the retroarc region. The last contractional stage coexists with an eastward foreland expansion of the late Miocene arc whose roots are presently exposed as minor granitic stocks and volcanic piles subordinately in the Main Andes, east of the present arc. As a consequence of this orogenic stage a foreland basin has developed, having progressed from 18 Ma in the main North Patagonian Andes, where the mountain front was flooded by a marine transgression corresponding to the base of the Ñirihuau Formation, to 11 Ma in the foreland area. Cannibalization of this foreland basin occurred initially in the hinterland and then progressed to the foreland zone. Blind structures formed a broken foreland at the frontal zone inferred from growth strata geometries. During Pliocene to Quaternary times most of the contractional deformation was dissipated in the orogenic wedge at the time when the arc front retracted to its present position.
This study synthesizes the tectonomagmatic evolution of the Andes between 35°30'S to 48°S with the aim to spotlight early contractional phases on Andean orogenic building and to analyze their potential driving processes. We examine early tectonic stages of the different fold-thrust belts that compose this Andean segment. Additionally, we analyzed the spatiotemporal magmatic arc evolution as a proxy of dynamic changes in Andean subduction during critical tectonic stages of orogenic construction. This revision proposes a hypothesis related the existence of a continuous large-scale flat subduction setting in Cretaceous times with a similar size to the present-largest flat-slab setting on earth. This potential process would have initiated diachronically in the late Early Cretaceous and achieved full development in Late Cretaceous to earliest Paleocene times, constructing a series of fold-thrust belts on the retroarc zone from 35°30'S to 48°S. Moreover, we assess major paleogeographic changes that took place during flat-slab full development in Maastrichtian-Danian times. At this moment, an enigmatic Atlantic-derived marine flooding covered the Patagonian foreland reaching as far as the Andean foothills. Based on flexural and dynamic topography analyses, we suggest that focused dynamic subsidence at the edge of the flat-slab may explain sudden marine ingression previously linked to continental tilting and orogenic loading during a high sea level global stage. Finally, flat-subduction destabilization could have triggered massive outpouring of synextensional intraplate volcanic rocks in southern South America and the arc retraction in late Paleogene to early Neogene times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.