Fungal infection represents up to 50% of yield losses, making it necessary to apply effective and cost efficient fungicide treatments, whose efficacy depends on infestation type, situation and time. In these cases, a correct and early identification of the specific infection is mandatory to minimize yield losses and increase the efficacy and efficiency of the treatments. Over the last years, a number of image analysis-based methodologies have been proposed for automatic image disease identification. Among these methods, the use of Deep Convolutional Neural Networks (CNNs) has proven tremendously successful for different visual classification tasks. In this work we extend previous work by Johannes et al. (2017) with an adapted Deep Residual Neural Network-based algorithm to deal with the detection of multiple plant diseases in real acquisition conditions where different adaptions for early disease detection have been proposed. This work analyses the performance of early identification of three relevant European endemic wheat diseases: Septoria (Septoria triciti ), Tan Spot (Drechslera triciti-repentis) and Rust (Puccinia striiformis & Puccinia recondita). The analysis was done using
Disease diagnosis based on the detection of early symptoms is a usual threshold taken into account for integrated pest management strategies. Early phytosanitary treatment minimizes yield losses and increases the efficacy and efficiency of the treatments. However, the appearance of new diseases associated to new resistant crop variants complicates their early identification delaying the application of the appropriate corrective actions. The use of image based automated identification systems can leverage early detection of diseases among farmers and technicians but they perform poorly under real field conditions using mobile devices. A novel image processing algorithm based on candidate hot-spot detection in combination with statistical inference methods is proposed to tackle disease identification in wild conditions. This work analyses the performance of early identification of three European endemic wheat diseases-septoria, rust and tan spot. The analysis was done using 7 mobile devices and more than 3500 images captured in two pilot sites in Spain and Germany during 2014, 2015 and 2016. Obtained results reveal AuC (Area under the Receiver Operating Characteristic-ROC-Curve) metrics higher than 0.80 for all the analyzed diseases on the pilot tests under real conditions.
Abstract. The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap.
During the last years, deep learning techniques have demonstrated their capability to outperform traditional machine learning methods in completing complex pattern recognition tasks. In this article we will try to explain the reasons behind this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.