Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot’s capability to stem haemorrhage are its changing mechanical properties, the major driver of which are the contractile forces exerted by platelets against the fibrin scaffold 1. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding 2 and thrombotic disorders 3. Here, we report a high-throughput hydrogel based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.
An electrochemical etching based on oxalic acid was developed for use in the chemical lift-off of GaN epitaxial structures. It was shown that only the Si-doped n-GaN layer was etched away, while the p-type and undoped GaN layers were not etched at all. The etch rate and the remaining structure were analyzed for various doping concentrations and etching voltages. A lateral etch rate of 12 μm/min was achieved under 60 V for n-type doping concentration of 8×1018 cm−3. This doping selective etching was used to lift-off a GaN epitaxial layer patterned into 300×300 μm2 squares.
Localized surface plasmon (LSP) effects due to Ag and Ag/SiO2 nanoparticles (NPs) deposited on GaN/InGaN multiquantum well (MQW) light‐emitting diode (LED) structures are studied. The colloidal NPs are synthesized by a sol‐gel method and drop‐cased on the LED structures. The surface density of NPs its controlled by the concentration of the NP solution. Theoretical modeling is performed for the emission spectrum and the electric field distribution of LSP resonance for Ag/SiO2 NPs. Enhanced photoluminescence (PL) efficiency is observed in the LED structures and the amount of PL enhancement increases with increasing the surface density of Ag and Ag/SiO2 NPs. These effects are attributed to resonance coupling between the MQW and LSP in the NPs. It is also shown that the PL enhancement attainable with Ag NPs and Ag/SiO2 NPs is comparable, but the latter displays a much higher stability with respect to long‐term storage and annealing due to a barrier for NP agglomeration, Ag oxidation, and impurity diffusion provided by the SiO2 shell.
High crystalline a-plane (112¯0) GaN epitaxial layers with smooth surface morphology were grown on r-plane (11¯02) sapphire substrate by metalorganic chemical vapor deposition. The full width at half maximum of x-ray rocking curve was measured as 407 arc sec along c-axis direction, and the root mean square roughness was 1.23 nm. Nonpolar a-plane InGaN/GaN light emitting diodes were subsequently grown on a-plane GaN template, and the optical output power of 0.72 mW was obtained at drive current of 20 mA (3.36 V) and 2.84 mW at 100 mA (4.62 V) with the peak emission wavelength of 477 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.