Aryl‐ether‐free anion‐exchange ionomers (AEIs) and membranes (AEMs) have become an important benchmark to address the insufficient durability and power‐density issues associated with AEM fuel cells (AEMFCs). Here, we present aliphatic chain‐containing poly(diphenyl‐terphenyl piperidinium) (PDTP) copolymers to reduce the phenyl content and adsorption of AEIs and to increase the mechanical properties of AEMs. Specifically, PDTP AEMs possess excellent mechanical properties (storage modulus>1800 MPa, tensile strength>70 MPa), H2 fuel‐barrier properties (<10 Barrer), good ion conductivity, and ex‐situ stability. Meanwhile, PDTP AEIs with low phenyl content and high‐water permeability display excellent peak power densities (PPDs). The present AEMFCs reach outstanding PPDs of 2.58 W cm−2 (>7.6 A cm−2 current density) and 1.38 W cm−2 at 80 °C in H2/O2 and H2/air, respectively, along with a specific power (PPD/catalyst loading) over 8 W mg−1, which is the highest record for Pt‐based AEMFCs so far.
BackgroundSilibinin is the major active molecule of silymarin, the mixture of flavonolignans extracted from Cirsium japonicum. It has been used for the treatment of hepatitis and inflammation-related diseases. In the present study, the effects of silibinin on allergic inflammation and its signaling were investigated in the induced human mast cells.MethodsCell growth inhibition induced by silibinin was measured by MTS assay. Histamine release was measured by enzyme immunoassay. The tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) secreted protein levels and mRNA levels were measured by the ELISA assay and RT-PCR, respectively. The NF-κB promoter activity was examined by a luciferase assay.ResultsSilibinin suppressed the growth of HMC-1 cells and also reduced the production and mRNA expression of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-8. Moreover, silibinin inhibited the nuclear translocation of nuclear factor (NF)-κB through inhibition of the phosphorylation of IκBα and suppressed NF-κB transcriptional activity in stimulated HMC-1 cells.ConclusionsTaken together, these results indicate that silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-κB signaling pathway in HMC-1 human mast cells, suggesting that silibinin could be used for the treatment of mast cell-derived allergic inflammatory diseases.
Aging is a progressive process related to the accumulation of oxidative damage and neuroinflammation. We tried to find the anti-amnesic effect of the Scutellaria baicalens Georgia (SBG) ethanol extract and its major ingredients. The antioxidative effect of SBG on the mice model with memory impairment induced by chronic injection of D-galactose and sodium nitrate was studied. The Y-maze test was used to evaluate the learning and memory function of mice. The activities of superoxide dismutase, catalase and the content of malondialdehyde in brain tissue were used for the antioxidation activities. Neuropathological alteration and expression of bcl-2 protein were investigated in the hippocampus by immunohistochemical staining. ROS, neuroinflammation and apoptosis related molecules expression such as Cox-2, iNOS, procaspase-3, cleaved caspase-3, 8 and 9, bcl-2 and bax protein and the products of iNOS and Cox-2, NO, PGE2, were studied using LPS-activated Raw 264.7 cells and microglia BV2 cells. The cognition of mice was significantly improved by the treatment of baicalein and 50 and 100 mg/kg of SBG in Y-maze test. Both SBG groups showed strong antioxidation, antiinflammation effects with significantly decreased iNOS and Cox-2 expression, NO and PGE2 production, increased bcl-2 and decreased bax and cleaved caspase-3 protein expression in LPS induced Raw 264.7 and BV2 cells. We also found that apoptotic pathway was caused by the intrinsic mitochondrial pathway with the decreased cleaved caspase-9 and unchanged cleaved caspase-8 expression. These findings suggest that SBG, especially high dose, 100 mg/kg, improved the memory impairments significantly and showed antioxidation, antiinflammation and intrinsic caspase-mediated apoptosis effects.
Houttuynia cordata Thunb (HCT) is widely used in oriental medicine as a remedy for inflammation. However, at present there is no explanation for the mechanism by which HCT affects the production of inflammatory cytokines. The current study aimed to determine the effect of an essence extracted from HCT on mast cell-mediated inflammatory responses. Inflammatory cytokine production induced by phorbol myristate acetate (PMA) plus a calcium ionophore, A23187, was measured in the human mast cell line, HMC-1, incubated with various concentrations of HCT. TNF-α, IL-6 and IL-8 secreted protein levels were measured using an ELISA assay. TNF-α, IL-6 and IL-8 mRNA levels were measured using RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by western blot analysis. The NF-κB promoter activity was examined by luciferase assay. It was observed that HCT inhibited PMA plus A23187-induced TNF-α and IL-6 secretion and reduced the mRNA levels of TNF-α, IL-6 and IL-8. It was also noted that HCT suppressed the induction of NF-κB activity, inhibited nuclear translocation of NF-κB and blocked the phosphorylation of IκBα in stimulated HMC-1 cells. It was concluded that HCT is an inhibitor of NF-κB and cytokines blocking mast cell-mediated inflammatory responses. These results indicate that HCT may be used for the treatment of mast cell-derived allergic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.