Background DA-9401 was prepared as a mixture of Chinese medicinal herb extracts from roots of Morinda officinalis How (Rubiaceae), outer scales of Allium cepa L. (Liliceae) and seeds of Cuscuta chinensis Lamark (Convolvulaceae). The present study was designed to investigate the possible protective role of DA-9401 in adriamycin (ADR)-induced testicular toxicity associated with oxidative stress, endoplasmic reticulum (ER) stress, and apoptosis. Methods Fifty healthy 8-week-old male Sprague–Dawley rats were equally divided into five groups. The first CTR group was treated with normal saline 2 ml/day by gavage. The second was treated with DA-100 (DA-9401 100 mg/kg/day). The third (ADR) group received ADR (2 mg/kg/once a week) intraperitoneally, while the combination of ADR and DA-9401 was given to the fourth ADR + DA-100 (100 mg/kg/day p.o) group and fifth ADR + DA-200 (200 mg/kg/day p.o) group. At the end of the 8-week treatment period, body weight, reproductive organ weights, fertility rate, pups per female were recorded, and serum were assayed for hormone concentrations. Tissues were subjected to semen analysis, histopathological changes, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), oxidative stress markers and expression levels of endoplasmic reticulum (ER) stress markers, apoptosis markers, tight junction protein markers, steroidogenic acute regulatory protein (StAR), cation channel of sperm (CatSper) and glycogen synthase kinase-3 (GSK-3) by western blot. Results DA-9401 administration to ADR-treated rats significantly decreased serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, interleukin-6, TNF-α, MDA level, ROS/RNS level, ER stress response protein levels, tunnel positive cells, cleaved caspase-3, and Bax/Bcl2 ratio. Moreover, pretreatment with DA-9401 significantly increased body weight, reproductive organ weights, fertility rate, pups per female, Johnsen’s score, spermatogenic cell density, sperm count and sperm motility, serum testosterone concentration, testicular superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), tight junction protein markers, star protein level, CatSper, and GSK-3 level. Conclusions ADR treatment can markedly impair testicular function and induce testicular cell death presumably by causing significant changes in oxidative stress, ER stress, and mitochondrial pathway. DA-9401 exerts beneficial effects against oxidative stress, ER stress, and mitochondria-mediated cell death pathway in testis tissue by up-regulating expression levels of tight junction protein markers, steroidogenic acute regulatory protein, GSK-3 alpha, and cation channels of sperm. Electronic supplementary material The online version of this article (10.1186/s12935-019-0805-2) contains supplementary material, which is available to authorized users.
Schisandra chinensis Baillon (SC) has been utilized for its antioxidants and anti-inflammatory activities in a broad variety of medical applications. However; SC uses for improving fertility in males and related disorders with proper scientific validation remain obscure. The present study aimed to investigate the effects of SC on varicocele (VC)-induced testicular dysfunction and the potential molecular mechanism associated with VC-induced germ cell apoptosis. The male Sprague–Dawley rats were equally divided into four groups consisting of 10 rats in a normal control group (CTR), a control group administered SC 200 mg/kg (SC 200), a varicocele-induced control group (VC), and a varicocele-induced group administered SC 200 mg/kg (VC + SC 200). Rats were administrated 200 mg/kg SC once daily for 28 days after induction of varicocele rats and sham controls. At the end of the treatment period, body and reproductive organ weight, sperm parameters, histopathological damages, proinflammatory cytokines, apoptosis markers, biomarkers of oxidative stress, endoplasmic reticulum (ER) stress, and steroidogenic acute regulatory protein (StAR) were evaluated. The effects of SC extract on human sperm motility were also analyzed. SC treatment reduces VC-induced testicular dysfunction by significantly increasing testicular weight, sperm count and sperm motility, serum testosterone level, Johnsen score, spermatogenic cell density, testicular superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase level, and steroidogenic acute regulatory protein (StAR) level. Furthermore, the effects of SC on malondialdehyde (MDA) level, reactive oxygen species (ROS)/reactive nitrogen species (RNS) level, apoptotic index, serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, Glucose-regulated protein-78 (Grp 78), phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated inositol-requiring transmembrane kinase/endoribonuclease 1α (p-IRE1α), cleaved caspase 3, and Bax:Bcl2 in VC-induced rats were significantly decreased. Treatment with SC extracts also increased sperm motility in human sperm. Our findings suggest that the SC ameliorate testicular dysfunction in VC-induced rats via crosstalk between oxidative stress, ER stress, and mitochondrial-mediated testicular germ cell apoptosis signaling pathways. SC promotes spermatogenesis by upregulating abnormal sex hormones and decreasing proinflammatory cytokines (interleukin-6; TNF-α).
Background: Monotropein, astragalin, and spiraeoside (MAS) are active compounds extracted from medicinal herbs; monotropein from Morinda officinalis How (Rubiaceae), astragalin (kaempferol 3-O-glucoside) from Cuscuta chinensis Lamark (Convolvulaceae) and spiraeoside from the outer scales of Allium cepa L. (Liliceae) in a ratio of 6.69:0.41:3.61. Monotropein, astragalin, and spiraeoside are well-known antioxidants, anti-inflammatory, and antinociceptive agents. The current investigation aims to study the molecular mechanism of varicocele-induced male infertility and the underlying pharmacological mechanisms of MAS. Methods: Four groups were included: control (CTR), MAS 200 group (MAS 200 mg/kg), varicocele group (VC), and VC + MAS 200 group (MAS 200 mg/kg). Sprague-Dawley (SD) rats were treated with 200 mg/kg MAS or vehicle once daily for 28 days. The possible signaling mechanism and effects of MAS were measured via histological staining, immunohistochemistry, western blot, and biochemical assays. Results: Parameters such as sperm motility and count, Johnsen's scores, spermatogenic cell density, serum testosterone, testicular superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and expression of the steroidogenic acute regulatory protein (StAR) improved significantly in the VC + MAS 200 group compared with the VC group. MAS treatment of varicocele-induced group significantly decreased the levels of serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as testicular interleukin-6 (IL6), tumor necrosis factor-α (TNF-α), ROS/RNS, and malondialdehyde (MDA). It also decreased the apoptotic index and reduced the expression of endoplasmic reticulum (ER) protein levels (Grp78, p-IRE1α, and p-JNK) and apoptotic markers such as cleaved caspase-3 and Bax/Bcl2 ratio. Conclusion: This study suggests that the crosstalk between oxidative stress, ER stress, and mitochondrial pathway mediates varicocele-induced testicular germ cell apoptosis. MAS promotes spermatogenesis in varicocele-induced SD rat, probably by decreasing cytokines (IL-6, TNF-α) levels, regulating abnormal sex hormones, and decreasing oxidative stress, ER stress, and apoptosis.
Endoplasmic reticulum (ER) stress, defined as prolonged disturbances in protein folding and accumulation of unfolded proteins in the ER. Perturbation of the ER, such as distribution of oxidative stress, iron imbalance, Ca 2+ leakage, protein overload, and hypoxia, can cause ER stress. The cell reacts to ER stress by activating protective pathways, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed for maintaining cellular homeostasis or, in case of excessively severe stress, at the initiation of cellular apoptosis. The three UPR signaling pathways from the ER stress sensors are initiated by activating transcription factor 6, inositol requiring enzyme 1, and protein kinase RNA-activated-like ER kinase. A number of physiological and pathological conditions, environmental toxicants and variety of pharmacological agents showed disruption of proper ER functions and thereby cause ER stress in male reproductive organ in rat model. The present review summarizes the existing data concerning the molecular and biological mechanism of ER stress in male reproduction and male infertility. ER stress initiated cell death pathway has been related to several diseases, including hypoxia, heath disease, diabetes, and Parkinson's disease. Although there is not enough evidence to prove the relationship between ER stress and male infertility in human, most studies in this review found that ER stress was correlated with male reproduction and infertility in animal models. The ER stress could be novel signaling pathway of regulating male reproductive cellular apoptosis. Infertility might be a result of disturbing the ER stress response during the process of male reproduction. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Onion (Allium cepa L.) and quercetin protect against oxidative damage and have positive effects on multiple functional parameters of spermatozoa, including viability and motility. However, the associated underlying mechanisms of action have not yet been identified. The aim of this study was to investigate the effect of onion peel extract (OPE) on voltage-gated proton (Hv1) channels, which play a critical role in rapid proton extrusion. This process underlies a wide range of physiological processes, particularly male fertility. The whole-cell patch-clamp technique was used to record the changes in Hv1 currents in HEK293 cells transiently transfected with human Hv1 (HVCN1). The effects of OPE on human sperm motility were also analyzed. OPE significantly activated the outward-rectifying proton currents in a concentration-dependent manner, with an EC value of 30 μg/mL. This effect was largely reversible upon washout. Moreover, OPE induced an increase in the proton current amplitude and decreased the time constant of activation at 0 mV from 4.9 ± 1.7 to 0.6 ± 0.1 sec (n = 6). In the presence of OPE, the half-activation voltage (V ) shifted in the negative direction, from 20.1 ± 5.8 to 5.2 ± 8.7 mV (n = 6), but the slope was not significantly altered. The OPE-induced current was profoundly inhibited by 10 μm Zn , the most potent Hv1 channel inhibitor, and was also inhibited by treatment with GF109203X, a specific protein kinase C (PKC) inhibitor. Furthermore, sperm motility was significantly increased in the OPE-treated groups. OPE exhibits protective effects on sperm motility, at least partially via regulation of the proton channel. Moreover, similar effects were exerted by quercetin, the major flavonoid in OPE. These results suggest OPE, which is rich in the potent Hv1 channel activator quercetin, as a possible new candidate treatment for human infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.