We use Global Positioning System (GPS) measurements of surface deformation to show that the convergence between the Australian Plate and Sunda Block in eastern Indonesia is partitioned between the megathrust and a continuous zone of back‐arc thrusting extending 2000 km from east Java to north of Timor. Although deformation in this back‐arc region has been reported previously, its extent and the mechanism of convergence partitioning have hitherto been conjectural. GPS observations establish that partitioning occurs via a combination of anticlockwise rotation of an arc segment called the Sumba Block, and left‐lateral movement along a major NE‐SW strike‐slip fault west of Timor. We also identify a westward extension of the back‐arc thrust for 300 km onshore into East Java, accommodating slip of ∼6 mm/yr. These results highlight a major new seismic threat for East Java and draw attention to the pronounced seismic and tsunami threat to Bali, Lombok, Nusa Tenggara, and other coasts along the Flores Sea.
GPS data in southern Sumatra, Indonesia, indicate crustal deformation associated to subduction zone and inland fault of Great Sumatran Fault (GSF). We analyze these deformation characteristics using campaign and continuous GPS data available in southern Sumatra from 2006-2014. After removing the effect of GSF in southern Sumatra and coseismic displacements of 2007 Bengkulu and 2012 Indian Ocean earthquake, we find that GPS sites experienced northwest-ward direction. These GPS velocities correspond to postseismic deformation of the 2007 Bengkulu earthquake and the 2012 Indian Ocean earthquake. We analyze strain using these velocities, and we find that postseismic strains in southern Sumatra are in the range of 0.8-20 nanostrain.
Continuous global positioning system (GPS) in northern Sumatra detected signal of the ongoing physical process of postseismic deformation after the M9.2 2004 Sumatra-Andaman earthquake. We analyze the characteristics of postseismic deformation of the 2004 earthquake based on GPS networks operated by BIG, and the others named AGNeSS, and SuGAr networks located in northern Sumatra. We use a simple analytical logarithmic and exponential function to evaluate the postseismic deformation parameters of the 2004 earthquake. We find that GPS data in northern Sumatra during time periods of 2005-2012 are fit better using the logarithmic function with slog of 104.2 ± 0.1 than using the exponential function. Our result clearly indicates that other physical mechanisms of postseismic deformation should be taken into account rather than a single physical mechanism of afterslip only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.